Qian Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9330876/publications.pdf

Version: 2024-02-01

15 papers	433 citations	9 h-index	1199166 12 g-index
18	18	18	573 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Iron-bound organic carbon in forest soils: quantification and characterization. Biogeosciences, 2016, 13, 4777-4788.	1.3	123
2	Dynamics of ferrihydrite-bound organic carbon during microbial Fe reduction. Geochimica Et Cosmochimica Acta, 2017, 212, 221-233.	1.6	107
3	Coupled dynamics of iron and iron-bound organic carbon in forest soils during anaerobic reduction. Chemical Geology, 2017, 464, 118-126.	1.4	57
4	Soil carbon stocks in temperate grasslands differ strongly across sites but are insensitive to decadeâ€long fertilization. Global Change Biology, 2022, 28, 1659-1677.	4.2	34
5	Strong mineralogic control of soil organic matter composition in response to nutrient addition across diverse grassland sites. Science of the Total Environment, 2020, 736, 137839.	3.9	29
6	Photo-production of reactive oxygen species and degradation of dissolved organic matter by hematite nanoplates functionalized by adsorbed oxalate. Environmental Science: Nano, 2020, 7, 2278-2292.	2.2	21
7	Oxidation of soil organic carbon during an anoxic-oxic transition. Geoderma, 2020, 377, 114584.	2.3	15
8	Biogeochemical fate of ferrihydrite-model organic compound complexes during anaerobic microbial reduction. Science of the Total Environment, 2019, 668, 216-223.	3.9	11
9	Can switchgrass increase carbon accrual in marginal soils? The importance of site selection. GCB Bioenergy, 2021, 13, 320-335.	2.5	11
10	Unexpected mechanism for glucose-primed soil organic carbon mineralization under an anaerobic–aerobic transition. Geoderma, 2020, 376, 114535.	2.3	10
11	Dynamics of organic matter molecular composition under aerobic decomposition and their response to the nitrogen addition in grassland soils. Science of the Total Environment, 2022, 806, 150514.	3.9	9
12	Selective Interactions of Soil Organic Matter Compounds with Calcite and the Role of Aqueous Ca. ACS Earth and Space Chemistry, 0 , , .	1.2	4
13	Biochemical inhibition of acid phosphatase activity in two mountain spruce forest soils. Biology and Fertility of Soils, 2021, 57, 991-1005.	2.3	2
14	Characterizing the localization of organic C on mineral surfaces: a correlative microscopy/spectroscopy approach. Microscopy and Microanalysis, 2021, 27, 306-307.	0.2	0
15	Stability of mineralâ€organic matter associations under varying biogeochemical conditions. Soil Science Society of America Journal, 0, , .	1.2	0