João Neres

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9330344/publications.pdf Version: 2024-02-01

IOÃEO NEDES

#	Article	IF	CITATIONS
1	Towards a new combination therapy for tuberculosis with next generation benzothiazinones. EMBO Molecular Medicine, 2014, 6, 372-383.	3.3	311
2	Towards a new tuberculosis drug: pyridomycin – nature's isoniazid. EMBO Molecular Medicine, 2012, 4, 1032-1042.	3.3	175
3	Structural Basis for Benzothiazinone-Mediated Killing of <i>Mycobacterium tuberculosis</i> . Science Translational Medicine, 2012, 4, 150ra121.	5.8	159
4	DprE1 Is a Vulnerable Tuberculosis Drug Target Due to Its Cell Wall Localization. ACS Chemical Biology, 2015, 10, 1631-1636.	1.6	123
5	Inhibition of Siderophore Biosynthesis in <i>Mycobacterium tuberculosis</i> with Nucleoside Bisubstrate Analogues: Structureâ°Activity Relationships of the Nucleobase Domain of 5â€2- <i>O</i> -[<i>N</i> -(Salicyl)sulfamoyl]adenosine. Journal of Medicinal Chemistry, 2008, 51, 5349-5370.	2.9	118
6	2-Carboxyquinoxalines Kill <i>Mycobacterium tuberculosis</i> through Noncovalent Inhibition of DprE1. ACS Chemical Biology, 2015, 10, 705-714.	1.6	116
7	4-Aminoquinolone Piperidine Amides: Noncovalent Inhibitors of DprE1 with Long Residence Time and Potent Antimycobacterial Activity. Journal of Medicinal Chemistry, 2014, 57, 5419-5434.	2.9	97
8	The 8-Pyrrole-Benzothiazinones Are Noncovalent Inhibitors of DprE1 from Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2015, 59, 4446-4452.	1.4	85
9	Inhibition of Siderophore Biosynthesis by 2-Triazole Substituted Analogues of 5′-‹i>O-[<i>N</i> -(Salicyl)sulfamoyl]adenosine: Antibacterial Nucleosides Effective against <i>Mycobacterium tuberculosis</i> . Journal of Medicinal Chemistry, 2008, 51, 7495-7507.	2.9	83
10	Discovery of novel inhibitors of Trypanosoma cruzi trans-sialidase from in silico screening. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 589-596.	1.0	68
11	Biological and structural characterization of the Mycobacterium smegmatis nitroreductase NfnB, and its role in benzothiazinone resistance. Molecular Microbiology, 2010, 77, 1172-1185.	1.2	63
12	Pyridomycin bridges the NADH- and substrate-binding pockets of the enoyl reductase InhA. Nature Chemical Biology, 2014, 10, 96-98.	3.9	63
13	Biochemical and Structural Characterization of Bisubstrate Inhibitors of BasE, the Self-Standing Nonribosomal Peptide Synthetase Adenylate-Forming Enzyme of Acinetobactin Synthesis,. Biochemistry, 2010, 49, 9292-9305.	1.2	52
14	Non-Nucleoside Inhibitors of BasE, an Adenylating Enzyme in the Siderophore Biosynthetic Pathway of the Opportunistic Pathogen <i>Acinetobacter baumannii</i> . Journal of Medicinal Chemistry, 2013, 56, 2385-2405.	2.9	48
15	DprE1 - from the Discovery to the Promising Tuberculosis Drug Target. Current Pharmaceutical Design, 2013, 20, 4379-4403.	0.9	47
16	Rational drug design in parasitology: trans-sialidase as a case study for Chagas disease. Drug Discovery Today, 2008, 13, 110-117.	3.2	46
17	Discovery of benzothiazoles as antimycobacterial agents: Synthesis, structure–activity relationships and binding studies with Mycobacterium tuberculosis decaprenylphosphoryl-β-d-ribose 2′-oxidase. Bioorganic and Medicinal Chemistry, 2015, 23, 7694-7710.	1.4	44
18	Aryl Acid Adenylating Enzymes Involved in Siderophore Biosynthesis: Fluorescence Polarization Assay, Ligand Specificity, and Discovery of Non-nucleoside Inhibitors via High-Throughput Screening. Biochemistry, 2008, 47, 11735-11749.	1.2	43

JOãO NERES

#	Article	IF	CITATIONS
19	Benzoic acid and pyridine derivatives as inhibitors of Trypanosoma cruzi trans-sialidase. Bioorganic and Medicinal Chemistry, 2007, 15, 2106-2119.	1.4	41
20	Inhibitors of the Salicylate Synthase (MbtI) from <i>Mycobacterium tuberculosis</i> Discovered by Highâ€Throughput Screening. ChemMedChem, 2010, 5, 2079-2087.	1.6	41
21	The Global Virulence Regulators VsrAD and PhcA Control Secondary Metabolism in the Plant Pathogen <i>Ralstonia solanacearum</i> . ChemBioChem, 2009, 10, 2730-2732.	1.3	38
22	Characterization of DprE1-Mediated Benzothiazinone Resistance in Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2016, 60, 6451-6459.	1.4	36
23	Biophysical and X-ray Crystallographic Analysis of Mps1 Kinase Inhibitor Complexes [,] . Biochemistry, 2010, 49, 1689-1701.	1.2	35
24	Design, Synthesis, and Enzymatic Evaluation ofN1-Acyloxyalkyl- andN1-Oxazolidin-2,4-dion-5-yl-Substituted β-lactams as Novel Inhibitors of Human Leukocyte Elastase. Journal of Medicinal Chemistry, 2005, 48, 4861-4870.	2.9	33
25	Tryptophan as a Molecular Shovel in the Glycosyl Transfer Activity ofÂTrypanosoma cruzi Trans-sialidase. Biophysical Journal, 2010, 98, L38-L40.	0.2	26
26	Continuous fluorimetric assay for high-throughput screening of inhibitors of trans-sialidase from Trypanosoma cruzi. Analytical Biochemistry, 2006, 357, 302-304.	1.1	19
27	Nitroarenes as Antitubercular Agents: Stereoelectronic Modulation to Mitigate Mutagenicity. ChemMedChem, 2016, 11, 331-339.	1.6	19
28	Synthesis, Stability and In Vitro Dermal Evaluation of Aminocarbonyloxymethyl Esters as Prodrugs of Carboxylic Acid Agents. Bioorganic and Medicinal Chemistry, 2002, 10, 809-816.	1.4	17
29	Fluorescent Benzothiazinone Analogues Efficiently and Selectively Label Dpre1 in Mycobacteria and Actinobacteria. ACS Chemical Biology, 2018, 13, 3184-3192.	1.6	16
30	Insights into the Activity and Specificity of <i>Trypanosoma cruzi trans</i> -Sialidase from Molecular Dynamics Simulations. Biochemistry, 2013, 52, 3740-3751.	1.2	14
31	Mechanism of a Standalone Î²â€Łactone Synthetase: New Continuous Assay for a Widespread ANL Superfamily Enzyme. ChemBioChem, 2019, 20, 1701-1711.	1.3	5
32	Selective detection of epimeric pentose saccharides at physiological pH using a fluorescent receptor. Carbohydrate Research, 2014, 391, 61-65.	1.1	1