Hideki Ohtsu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9330328/publications.pdf

Version: 2024-02-01

430874 395702 1,122 42 18 33 h-index citations g-index papers 45 45 45 1383 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Synthesis and Photophysical Properties of Emissive Silver(I) Halogenido Coordination Polymers Composed of {Ag ₂ X ₂ } Units Bridged by Pyrazine, Methylpyrazine, and Aminopyrazine. Inorganic Chemistry, 2021, 60, 1299-1304.	4.0	12
2	An NAD ⁺ -type earth-abundant metal complex enabling photo-driven alcohol oxidation. Chemical Communications, 2021, 57, 13574-13577.	4.1	0
3	A Novel Photo-Driven Hydrogenation Reaction of an NAD+-Type Complex Toward Artificial Photosynthesis. Frontiers in Chemistry, 2019, 7, 580.	3.6	5
4	Luminescent mixed-ligand iodido copper(I) coordination polymers having antenna effect. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 353, 602-611.	3.9	10
5	Novel synthesis of a four-electron-reduced ruthenium(<scp>ii</scp>) NADH-type complex under water-gas-shift reaction conditions. Dalton Transactions, 2016, 45, 16130-16133.	3.3	6
6	Four-Electron Reduction of a New Ruthenium Dicarbonyl Complex Having Two NAD Model Ligands through Decarboxylation in Water. Inorganic Chemistry, 2016, 55, 11613-11616.	4.0	9
7	Construction of cis-Fused Hydrindane Skeleton with a Lactone Tether Utilizing Intramolecular Diels-Alder Reaction. Heterocycles, 2016, 93, 783.	0.7	1
8	Photochemical Properties and Reactivity of a Ru Compound Containing an NAD/NADH-Functionalized 1,10-Phenanthroline Ligand. Inorganic Chemistry, 2016, 55, 2076-2084.	4.0	26
9	Dichlorido[2-(pyridin-2-yl-κN)benzo[b][1,5]naphthyridine-κN1]zinc. IUCrData, 2016, 1, .	0.3	0
10	Chloridobis[2-(pyridin-2-yl- $\hat{\mathbb{P}}$ N)benzo[b][1,5]naphthyridine- $\hat{\mathbb{P}}$ N 1]copper(II) perchlorate acetonitrile disolvate. IUCrData, 2016, 1, .	0.3	0
11	[2-(2,2′-Bipyridin-6-yl-κ2N1,N1′)benzo[b][1,5]naphthyridine-κN1]dichloridozinc. IUCrData, 2016, 1, .	0.3	O
12	Remarkable accelerating and decelerating effects of the bases on CO2 reduction using a ruthenium NADH model complex. Journal of Photochemistry and Photobiology A: Chemistry, 2015, 313, 163-167.	3.9	15
13	Synthesis, structures and stability of amido gold(<scp>iii</scp>) complexes with 2,2′:6′,2′′-terpyridine. Dalton Transactions, 2014, 43, 15719-15722.	·3.3	5
14	Luminescence behaviour in acetonitrile and in the solid state of a series of lanthanide complexes with a single helical ligand. New Journal of Chemistry, 2014, 38, 1225-1234.	2.8	47
15	A Novel Triangular Macrocyclic Compound, [(tmeda)Pt(azpy)]3(PF6)6·13H2O (tmeda:) Tj ETQq1 1 0.784314 rgE	3T./Overlo	ck 10 Tf 50 1
16	Drastic difference in the photo-driven hydrogenation reactions of ruthenium complexes containing NAD model ligands. Chemical Communications, 2012, 48, 1796.	4.1	22
17	An Organic Hydride Transfer Reaction of a Ruthenium NAD Model Complex Leading to Carbon Dioxide Reduction. Angewandte Chemie - International Edition, 2012, 51, 9792-9795.	13.8	60
18	Catalytic Fourâ€Electron Oxidation of Water by Intramolecular Coupling of the Oxo Ligands of a Bis(ruthenium–bipyridine) Complex. Chemistry - A European Journal, 2012, 18, 2374-2381.	3.3	39

#	Article	IF	CITATIONS
19	A new type of electrochemical oxidation of alcohols mediated with a ruthenium–dioxolene–amine complex in neutral water. Inorganica Chimica Acta, 2011, 366, 298-302.	2.4	23
20	Ï€â€Conjugated Polymers Consisting of Isothianaphthene and Dialkoxyâ€ <i>p</i> pphenylene Units: Synthesis, Selfâ€Assembly, and Chemical and Physical Properties. Macromolecular Chemistry and Physics, 2010, 211, 2138-2147.	2.2	18
21	Photoinduced four- and six-electron reduction of mononuclear ruthenium complexes having NAD+ analogous ligands. Dalton Transactions, 2010, 39, 11526.	3.3	33
22	Ultra-thin emissive molecular devices: polarized emission of Ln(III) complex films. Monatshefte FÃ $\frac{1}{4}$ r Chemie, 2009, 140, 751-763.	1.8	18
23	The unprecedented role of a Cull cryptand in the luminescence properties of a EullI cryptate complex. Monatshefte FÃ $\frac{1}{4}$ r Chemie, 2009, 140, 783-787.	1.8	7
24	Polarized ff-Emission of Terbium(III) by using the Stretched Polymer Film Technique. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2008, 21, 333-338.	0.3	9
25	Ultrafast Optical Responses in a One-Dimensional Mott Insulator of a Br-Bridged Ni Compound. Journal of the Physical Society of Japan, 2008, 77, 023711.	1.6	12
26	Novel emission properties of melem caused by the heavy metal effect of lanthanides(iii) in a LB film. Photochemical and Photobiological Sciences, 2007, 6, 804.	2.9	13
27	Remarkable Functions of Longâ€Chain Alkyl Groups in Halogenâ€Bridged Nickel(III) Nanowire Complexes. European Journal of Inorganic Chemistry, 2007, 2007, 4425-4428.	2.0	6
28	Molecular Distortion Effect on ff-Emission in a Pr(III) Complex with 4,7-Diphenyl-1,10-Phenanthroline. ChemPhysChem, 2007, 8, 1345-1351.	2.1	11
29	Sequential Reaction Intermediates in Aliphatic Câ^'H Bond Functionalization Initiated by a Bis(ν-oxo)dinickel(III) Complex. Inorganic Chemistry, 2006, 45, 2873-2885.	4.0	39
30	Electronic Structural Changes between Nickel(II)-Semiquinonato and Nickel(III)-Catecholato States Driven by Chemical and Physical Perturbation. Chemistry - A European Journal, 2005, 11, 3420-3426.	3.3	32
31	Chemical Control of Valence Tautomerism of Nickel(II) Semiquinone and Nickel(III) Catecholate States. Angewandte Chemie - International Edition, 2004, 43, 6301-6303.	13.8	51
32	Equilibrium of Low- and High-Spin States of Ni(II) Complexes Controlled by the Donor Ability of the Bidentate Ligands. Inorganic Chemistry, 2004, 43, 3024-3030.	4.0	60
33	Characterization of a Stable Ruthenium Complex with an Oxyl Radical. Journal of the American Chemical Society, 2003, 125, 6729-6739.	13.7	92
34	Ruthenium Oxyl Radical Complex Containingo-Quinone Ligand Detected by ESR Measurements of Spin Trapping Technique. Chemistry Letters, 2002, 31, 868-869.	1.3	17
35	Formation of superoxide–metal ion complexes and the electron transfer catalysis. Coordination Chemistry Reviews, 2002, 226, 71-80.	18.8	48
36	Characterization of Imidazolate-Bridged Dinuclear and Mononuclear Hydroperoxo Complexes. Inorganic Chemistry, 2001, 40, 3200-3207.	4.0	52

#	Article	IF	CITATION
37	Quantitative Evaluation of Lewis Acidity of Zinc Ion with Tetradentate Tripodal Ligands in Formation of the Superoxide Complexes. Chemistry Letters, 2001, 30, 920-921.	1.3	9
38	Coordination of Semiquinone and Superoxide Radical Anions to the Zinc Ion in SOD Model Complexes that Act as the Key Step in Disproportionation of the Radical Anions. Chemistry - A European Journal, 2001, 7, 4947-4953.	3.3	21
39	The Essential Role of a ZnII Ion in the Disproportionation of Semiquinone Radical Anion by an Imidazolate-Bridged CuII–ZnII Model of Superoxide Dismutase. Angewandte Chemie - International Edition, 2000, 39, 4537-4539.	13.8	19
40	Characterization of imidazolate-bridged Cu(ii)–Zn(ii) heterodinuclear and Cu(ii)–Cu(ii) homodinuclear hydroperoxo complexes as reaction intermediate models of Cu,Zn–SOD. Chemical Communications, 2000, , 1051-1052.	4.1	30
41	Synthesis and Characterization of Imidazolate-Bridged Dinuclear Complexes as Active Site Models of Cu,Zn-SOD. Journal of the American Chemical Society, 2000, 122, 5733-5741.	13.7	209
42	A novel imidazolate-bridged copper–zinc heterodinuclear complex as a Cu, Zn–SOD active site model. Chemical Communications, 1999, , 2393-2394.	4.1	10