
Edgardo FabiÃ;n Irassar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9330223/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Durability of eco-friendly blended cements incorporating ceramic waste from different sources. Journal of Sustainable Cement-Based Materials, 2023, 12, 13-23.	3.1	5
2	Durability Performance of Blended Cement with Calcined Illitic Shale. ACI Materials Journal, 2022, 119, .	0.2	0
3	Properties and occurrence of clay resources for use as supplementary cementitious materials: a paper of RILEM TC 282-CCL. Materials and Structures/Materiaux Et Constructions, 2022, 55, .	3.1	19
4	Chloride migration and long-term natural carbonation on concretes with calcined clays: A study of calcined clays in Argentina. Case Studies in Construction Materials, 2022, 17, e01190.	1.7	2
5	Paper of RILEM TC 282-CCL: mineralogical characterization methods for clay resources intended for use as supplementary cementitious material. Materials and Structures/Materiaux Et Constructions, 2022, 55, .	3.1	4
6	Evaluation of the dustiness of fugitive dust sources using gravitational drop tests. Aeolian Research, 2021, 52, 100724.	2.7	2
7	Sulfate performance of calcined illitic shales. Construction and Building Materials, 2021, 291, 123215.	7.2	9
8	The throat classifier: A novel air classifier for the control of dust in manufactured sands. Powder Technology, 2021, 390, 417-427.	4.2	5
9	Sulfate performance of blended cements (limestone and illite calcined clay) exposed to aggressive environment after casting. Cement and Concrete Research, 2021, 147, 106495.	11.0	26
10	Comparison of dolostone and limestone as filler in blended cements. Bulletin of Engineering Geology and the Environment, 2020, 79, 243-253.	3.5	13
11	Effects of packing density and water film thickness on fresh and hardened properties of ternary cement pastes. Advances in Cement Research, 2020, 32, 444-455.	1.6	16
12	Modelling and optimization of an inclined plane classifier using CFD-DPM and the Taguchi method. Applied Mathematical Modelling, 2020, 77, 617-634.	4.2	16
13	Management of sanitary ware wastes as supplementary cementing materials in concretes. Journal of Sustainable Cement-Based Materials, 2020, 9, 35-49.	3.1	8
14	Assessment of packing, flowability, hydration kinetics, and strength of blended cements with illitic calcined shale. Construction and Building Materials, 2020, 254, 119042.	7.2	29
15	Concretes with Calcined Clay and Calcined Shale: Workability, Mechanical, and Transport Properties. Journal of Materials in Civil Engineering, 2020, 32, .	2.9	24
16	Carbonate rocks as fillers in blended cements: Physical and mechanical properties. Construction and Building Materials, 2020, 248, 118697.	7.2	14
17	Pozzolanic activity of argentine vitreous breccia containing mordenite. Materiales De Construccion, 2020, 70, 208.	0.7	4
18	Volumetric Deformations at Early Age on Portland Cement Pastes with the Addition of Illitic Calcined Clay. RILEM Bookseries, 2020, , 739-748.	0.4	0

#	Article	IF	CITATIONS
19	Performance of Blended Cements with Limestone Filler and Illitic Calcined Clay Immediately Exposed to Sulfate Environment. RILEM Bookseries, 2020, , 655-664.	0.4	0
20	Alkaline Activation of Blended Cements with Calcined Illitic Clay Using Glass Powder Wastes. RILEM Bookseries, 2020, , 115-124.	0.4	1
21	Complex Characterization and Behavior of Waste Fired Brick Powder-Portland Cement System. Materials, 2019, 12, 1650.	2.9	57
22	Calcined illite-chlorite shale as supplementary cementing material: Thermal treatment, grinding, color and pozzolanic activity. Applied Clay Science, 2019, 179, 105143.	5.2	52
23	Thermal Treatment and Pozzolanic Activity of Calcined Clay and Shale. ACI Materials Journal, 2019, 116,	0.2	5
24	Biocomposites Based on Thermoplastic Starch and Granite Sand Quarry Waste. Journal of Renewable Materials, 2019, 7, 393-402.	2.2	15
25	Evaluation of the performance of the cross-flow air classifier in manufactured sand processing via CFD–DEM simulations. Computational Particle Mechanics, 2018, 5, 87-102.	3.0	15
26	Novel air classification process to sustainable production of manufactured sands for aggregate industry. Journal of Cleaner Production, 2018, 198, 112-120.	9.3	16
27	Sulfate and Alkali-Silica Performance of Blended Cements Containing Illitic Calcined Clays. RILEM Bookseries, 2018, , 117-123.	0.4	7
28	Thermal Transformation of Illitic-Chlorite Clay and Its Pozzolanic Activity. RILEM Bookseries, 2018, , 266-272.	0.4	7
29	Blended Cements with Calcined Illitic Clay: Workability and Hydration. RILEM Bookseries, 2018, , 310-317.	0.4	9
30	Thermal Activation of Two Complex Clays (Kaolinite-Pyrophillite-Illite) from Tandilia System, Buenos Aires, Argentina. RILEM Bookseries, 2018, , 469-474.	0.4	2
31	Blended Cements with Limestone Filler and Kaolinitic Calcined Clay: Filler and Pozzolanic Effects. Journal of Materials in Civil Engineering, 2017, 29, .	2.9	71
32	Effect of cement composition on the early hydration of blended cements with natural zeolite. Journal of Thermal Analysis and Calorimetry, 2017, 128, 721-733.	3.6	23
33	Influence of packing density and water film thickness on early-age properties of cement pasteswith limestone filler and metakaolin. Materials and Structures/Materiaux Et Constructions, 2017, 50, 1.	3.1	37
34	Pozzolanic activity of calcined halloysite-rich kaolinitic clays. Applied Clay Science, 2017, 147, 11-18.	5.2	49
35	Portland blended cements: demolition ceramic waste management. Materiales De Construccion, 2017, 67, 114.	0.7	8
36	Hydration of blended cement pastes containing waste ceramic powder as a function of age. AIP Conference Proceedings, 2016, , .	0.4	3

Edgardo FabiÃin Irassar

#	Article	IF	CITATIONS
37	The effect of w/b and temperature on the hydration and strength of blastfurnace slag cements. Construction and Building Materials, 2016, 111, 679-688.	7.2	77
38	DSC and TG Analysis of a Blended Binder Based on Waste Ceramic Powder and Portland Cement. International Journal of Thermophysics, 2016, 37, 1.	2.1	50
39	Blended Cements Elaborated with Kaolinitic Calcined Clays. , 2015, 8, 211-217.		20
40	Calcined Illitic Clays as Portland Cement Replacements. RILEM Bookseries, 2015, , 269-276.	0.4	12
41	Blended Cements with Kaolinitic Calcined Clays: Study of the Immobilization of Cr(VI). RILEM Bookseries, 2015, , 203-209.	0.4	0
42	Applying high resolution SyXRD analysis on sulfate attacked concrete field samples. Cement and Concrete Research, 2014, 66, 19-26.	11.0	18
43	Potential use of Argentine kaolinitic clays as pozzolanic material. Applied Clay Science, 2014, 101, 468-476.	5.2	42
44	Thermal analysis to assess pozzolanic activity of calcined kaolinitic clays. Journal of Thermal Analysis and Calorimetry, 2014, 117, 547-556.	3.6	56
45	Kaolinitic calcined clays – Portland cement system: Hydration and properties. Construction and Building Materials, 2014, 64, 215-221.	7.2	81
46	Cement with silica fume and granulated blast-furnace slag: strength behavior and hydration. Materiales De Construccion, 2014, 64, e025.	0.7	16
47	Assessment of pozzolanic activity of different calcined clays. Cement and Concrete Composites, 2013, 37, 319-327.	10.7	320
48	Thermal Treatment of Kaolin: Effect on the Pozzolanic Activity. , 2012, 1, 343-350.		146
49	Incorporation of Calcined Clays in Mortars: Porous Structure and Compressive Strength. , 2012, 1, 366-373.		22
50	Activación térmica de bentonitas para su utilización como puzolanas. Revista De La Construccion, 2012, 11, 44-53.	0.5	9
51	Calorimetric characterization of Portland limestone cement produced by intergrinding. Journal of Thermal Analysis and Calorimetry, 2012, 109, 153-161.	3.6	9
52	Kaolinitic calcined clays: Factors affecting its performance as pozzolans. Construction and Building Materials, 2012, 28, 276-281.	7.2	175
53	Influencia del contenido de agua en la evolución de la hidratación de pastas de cemento con escoria. Revista De La Construccion, 2012, 11, 64-74.	0.5	0
54	Influence of limestone content, gypsum content and fineness on early age properties of Portland limestone cement produced by inter-grinding. Cement and Concrete Composites, 2011, 33, 192-200.	10.7	52

#	Article	IF	CITATIONS
55	Influencia de la temperatura de curado: hidratación y resistencia de pastas de cemento con escoria. Revista Materia, 2010, 15, 516-526.	0.2	1
56	Sulfate attack on cementitious materials containing limestone filler — A review. Cement and Concrete Research, 2009, 39, 241-254.	11.0	195
57	The Use of Polarization Resistance to Evaluate the Environmental Impact on Reinforced Concrete Structures in the Iberoamerican Region. ECS Transactions, 2007, 3, 111-116.	0.5	0
58	Hormigones con cementos compuestos ternarios. Parte I: estado fresco y resistencia mecánica. Materiales De Construccion, 2006, 56, .	0.7	3
59	Thaumasite formation in limestone filler cements exposed to sodium sulphate solution at 20 ŰC. Cement and Concrete Composites, 2005, 27, 77-84.	10.7	66
60	Strength optimization of "tailor-made cement―with limestone filler and blast furnace slag. Cement and Concrete Research, 2005, 35, 1324-1331.	11.0	79
61	A discussion of the paper "Characteristics of pastes from a Portland cement containing different amounts of natural pozzolan―by Adnan Çolak*. Cement and Concrete Research, 2004, 34, 1265-1266.	11.0	0
62	Microstructural study of sulfate attack on ordinary and limestone Portland cements at ambient temperature. Cement and Concrete Research, 2003, 33, 31-41.	11.0	175
63	Limestone filler cement in low w/c concrete: A rational use of energy. Cement and Concrete Research, 2003, 33, 865-871.	11.0	335
64	Strength development of ternary blended cement with limestone filler and blast-furnace slag. Cement and Concrete Composites, 2003, 25, 61-67.	10.7	252
65	High-strength concrete with different fine aggregate. Cement and Concrete Research, 2002, 32, 1755-1761.	11.0	220
66	Evolución de la hidratación en cementos con adiciones. Materiales De Construccion, 2002, 52, 57-64.	0.7	6
67	Studies on the carboaluminate formation in limestone filler-blended cements. Cement and Concrete Research, 2001, 31, 853-859.	11.0	381
68	Influence of initial curing on the properties of concrete containing limestone blended cement. Cement and Concrete Research, 2000, 30, 703-708.	11.0	168
69	A discussion of the paper "Durability of the hydrated limestone–silica fume Portland cement mortars under sulphate attack―by J. Zelic, R. Krstulović, E. TkalÄec and P. Krolo. Cement and Concrete Research, 2000, 30, 831-832.	11.0	1
70	Sulphate resistance of type V cements with limestone filler and natural pozzolana. Cement and Concrete Composites, 2000, 22, 361-368.	10.7	107
71	Effect of limestone filler on the sulfate resistance of low C3A portland cement. Cement and Concrete Research, 1998, 28, 1655-1667.	11.0	59
72	ETTRINGITE FORMATION IN LOW C 3 A PORTLAND CEMENT EXPOSED TO SODIUM SULFATE SOLUTION. Cement and Concrete Research, 1997, 27, 1061-1071.	11.0	78

#	Article	IF	CITATIONS
73	Sulfate attack on concrete with mineral admixtures. Cement and Concrete Research, 1996, 26, 113-123.	11.0	143
74	A discussion of the paper "effects of sodium sulfate concentration on the sulfate resistance of mortars with and without silica fume―by Fevziye Aköz, Fikret Türker, Sema Koral and Nabi Yüzer. Cement and Concrete Research, 1996, 26, 1285-1286.	11.0	0
75	The effect of stone dust content in sand. Cement and Concrete Research, 1994, 24, 580-590.	11.0	94
76	Sulfate resistance of blended cement: Prediction and relation with flexural strength. Cement and Concrete Research, 1990, 20, 209-218.	11.0	41
77	A discussion of the paper "internal and external sources of sulfate ions in Portland cement mortar: Two types of chemical attack,―by C. Ouyang, A. Nanni and W.F. Chang. Cement and Concrete Research, 1989, 19, 662-664.	11.0	4
78	Effects of low calcium fly ash on sulfate resistance of OPC cement. Cement and Concrete Research, 1989, 19, 194-202.	11.0	21
79	Resistencia a los sulfatos del cemento Portland normal con ceniza volante. Materiales De Construccion, 1989, 39, 11-20.	0.7	2

80 EvaluaciÃ³n de la resistencia a los sulfates de cemento con ceniza volante (utilizando el método de) Tj ETQq0 0 0 rgBT /Overlock 10 T

81	Thermogravimetry of Portland Cement from Argentina and Czech Republic. Advanced Materials Research, 0, 1126, 169-173.	0.3	2
82	Influence of different calcined clays to the water transport performance of concretes. Magazine of Concrete Research, 0, , 1-13.	2.0	4