Morio Nagata

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/932994/publications.pdf

Version: 2024-02-01

471509 434195 1,007 49 17 31 citations h-index g-index papers 49 49 49 1154 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Highly Efficient Hydrogen Production in the Photoreforming of Lignocellulosic Biomass Catalyzed by Cu,Inâ€Doped ZnS Derived from ZIFâ€8. Advanced Materials Interfaces, 2022, 9, 2101581.	3.7	6
2	Highly Efficient Photocatalytic Degradation of Hydrogen Sulfide in the Gas Phase Using Anatase/TiO ₂ (B) Nanotubes. ACS Omega, 2022, 7, 11946-11955.	3.5	15
3	Elucidating the Factors Affecting Hydrogen Production Activity Using a CdS/TiO ₂ Type-II Composite Photocatalyst. ACS Omega, 2021, 6, 4395-4400.	3.5	17
4	Photoreforming of Organic Waste into Hydrogen Using a Thermally Radiative CdO <i>_x</i> /CdS/SiC Photocatalyst. ACS Applied Materials & Interfaces, 2021, 13, 47511-47519.	8.0	34
5	Photoreforming of Lignocellulosic Biomass into Hydrogen under Sunlight in the Presence of Thermally Radiative CdS/SiC Composite Photocatalyst. ACS Applied Energy Materials, 2021, 4, 1059-1062.	5.1	18
6	<i>In situ</i> synthesis of CdS/CdWO ₄ nanorods core–shell composite <i>via</i> acid dissolution. RSC Advances, 2020, 10, 105-111.	3.6	8
7	Elucidation of the electron energy structure of TiO ₂ (B) and anatase photocatalysts through analysis of electron trap density. RSC Advances, 2020, 10, 18496-18501.	3.6	11
8	Photocurrent generation by a photosystem I-NiO photocathode for a p-type biophotovoltaic tandem cell. RSC Advances, 2020, 10, 15734-15739.	3.6	9
9	Analysis of Adsorption and Decomposition of Odour and Tar Components in Tobacco Smoke on Non-Woven Fabric-Supported Photocatalysts. Catalysts, 2020, 10, 304.	3.5	7
10	Water Purification in Dark Conditions Using Photocatalytic Light-leakage Type Plastic Optical Fiber. Chemistry Letters, 2020, 49, 199-202.	1.3	1
11	Integrated Photon Upconversion Dye-Sensitized Solar Cell by Co-adsorption with Derivative of Pt–Porphyrin and Anthracene on Mesoporous TiO ₂ . ACS Omega, 2019, 4, 11271-11275.	3.5	14
12	Efficient hydrogen production using photosystem I enhanced by artificial light harvesting dye. Photochemical and Photobiological Sciences, 2019, 18, 309-313.	2.9	25
13	Enhancement of Photocurrent by Integration of an Artificial Light-Harvesting Antenna with a Photosystem I Photovoltaic Device. ACS Applied Energy Materials, 2019, 2, 3986-3990.	5.1	18
14	Color-changeable gold luster film based on polyaniline and poly(3,4-ethylenedioxythiophene). Thin Solid Films, 2019, 677, 33-38.	1.8	2
15	Immobilization of Rhodamine B Isothiocyanate on TiO ₂ for Light Harvesting in Zinc Phthalocyanine Dye-sensitized Solar Cells. Chemistry Letters, 2018, 47, 225-227.	1.3	5
16	Fabrication of CdS \hat{I}^2 -SiC/TiO2 tri-composites that exploit hole- and electron-transfer processes for photocatalytic hydrogen production under visible light. International Journal of Hydrogen Energy, 2018, 43, 2207-2211.	7.1	18
17	Improving Interfacial Charge-Transfer Transitions in Nb-Doped TiO2 Electrodes with 7,7,8,8-Tetracyanoquinodimethane. Catalysts, 2018, 8, 367.	3.5	3
18	Photocatalytic Oxidation of Aqueous Ammonia to Nitrite and Nitrate Ions on Zeolite–TiO ₂ . Chemistry Letters, 2018, 47, 1542-1544.	1.3	4

#	Article	IF	Citations
19	Effective Photocatalytic Hydrogen Evolution by Cascadal Carrier Transfer in the Reverse Direction. ACS Omega, 2018, 3, 12770-12777.	3.5	14
20	Visible-Light Overall Water Splitting by CdS/WO ₃ /CdWO ₄ Tricomposite Photocatalyst Suppressing Photocorrosion. ACS Applied Energy Materials, 2018, 1, 6730-6735.	5.1	43
21	Selective immobilization of bacterial light-harvesting proteins and their photoelectric responses. MRS Communications, 2018, 8, 1124-1128.	1.8	1
22	Cu-doped ZnS/Zeolite Composite Photocatalysts for Hydrogen Production from Aqueous S ^{2â°'} /SO ₃ ^{2â°'} Solutions. Chemistry Letters, 2017, 46, 1797-1799.	1.3	10
23	Comparison of Photocatalytic Activities of Cu/TiO ₂ and Ag/TiO ₂ in Gaseous-and Liquid-Phases Degradation of H ₂ S. Nanoscience and Nanotechnology Letters, 2017, 9, 1696-1699.	0.4	6
24	Charge-transfer complex versus if -complex formed between TiO ₂ and bis(dicyanomethylene) electron acceptors. Physical Chemistry Chemical Physics, 2015, 17, 27343-27356.	2.8	21
25	Efficient light-to-current conversion by organic–inorganic interfacial charge-transfer transitions in TiO2 chemically adsorbed with 2-anthroic acid. Chemical Physics Letters, 2015, 619, 180-184.	2.6	51
26	Uncovering the mechanism for selective control of the visible and near-IR absorption bands in bacteriochlorophylls $\langle i \rangle a \langle i \rangle$, $\langle i \rangle b \langle i \rangle$ and $\langle i \rangle g \langle i \rangle$. Biophysics (Nagoya-shi, Japan), 2014, 10, 25-34.	0.4	1
27	Core stress distribution of phase shifting multimode polymer optical fiber. Applied Physics Letters, 2013, 103, 213301.	3.3	1
28	Design of dye-sensitized solar cells integrated in composite panel subjected to bending. Journal of Composite Materials, 2013, 47, 27-32.	2.4	4
29	Cosensitization Properties of Glutathione-Protected Au _{25} Cluster on Ruthenium Dye-Sensitized TiO _{2} Photoelectrode. International Journal of Photoenergy, 2013, 2013, 1-7.	2.5	16
30	Two-dimensional patterning of bacterial light-harvesting 2 complexes on lipid-modified gold surface. Applied Physics Letters, 2012, 100, 233701.	3.3	6
31	Immobilization and Photocurrent Activity of a Light-Harvesting Antenna Complex II, LHCII, Isolated from a Plant on Electrodes. ACS Macro Letters, 2012, 1, 296-299.	4.8	50
32	Two-Dimensional Molecular Assembly of Bacteriochlorophyll a Derivatives Using Synthetic Poly(ethylene glycol)-Linked Light-Harvesting Model Polypeptides on a Gold Electrode Modified with Supported Lipid Bilayers. ACS Macro Letters, 2012, 1, 28-32.	4.8	0
33	Study of Interfacial Charge Transfer Bands and Electron Recombination in the Surface Complexes of TCNE, TCNQ, and TCNAQ with TiO ₂ . Journal of Physical Chemistry C, 2011, 115, 21487-21493.	3.1	76
34	Immobilization of Porphyrin Derivatives with a Defined Distance and Orientation onto a Gold Electrode Using Synthetic Light-Harvesting \hat{l}_{\pm} -Helix Hydrophobic Polypeptides. Langmuir, 2010, 26, 14419-14422.	3.5	12
35	Enhancement of Incident Photon-to-Current Conversion Efficiency for Phthalocyanine-Sensitized Solar Cells by 3D Molecular Structuralization. Journal of the American Chemical Society, 2010, 132, 4054-4055.	13.7	215
36	Phospholipid-linked quinones-mediated electron transfer on an electrode modified with lipid bilayers. Colloids and Surfaces B: Biointerfaces, 2008, 61, 106-112.	5.0	6

#	Article	IF	CITATIONS
37	Electron transfer of quinone self-assembled monolayers on a gold electrode. Colloids and Surfaces B: Biointerfaces, 2008, 64, 16-21.	5.0	23
38	Overview on energy harvesting and storage systems (EHSS) for future AF vehicles. Proceedings of SPIE, 2008, , .	0.8	0
39	Design of dye-sensitized solar cells with new light-harvesting dyes. , 2008, , .		3
40	Self-Assembled Monolayer of Light-Harvesting Core Complexes from Photosynthetic Bacteria on a Gold Electrode Modified with Alkanethiols. Biomacromolecules, 2007, 8, 2457-2463.	5 . 4	70
41	Molecular assembly of artificial photosynthetic antenna core complex on an amino-terminated ITO electrode. Colloids and Surfaces B: Biointerfaces, 2007, 56, 182-187.	5.0	21
42	Self-assembled monolayer of light-harvesting core complexes of photosynthetic bacteria on an amino-terminated ITO electrode. Photosynthesis Research, 2007, 90, 17-21.	2.9	42
43	Molecular assembly of manganese mesoporphyrin derivatives on a gold electrode and their electron transfer activity. Thin Solid Films, 2005, 474, 310-321.	1.8	9
44	Self-assembled Monolayer of Light-harvesting 1 and Reaction Center (LH1-RC) Complexes Isolated fromRhodospirillum rubrumon an Amino-Terminated ITO Electrode. Chemistry Letters, 2004, 33, 772-773.	1.3	17
45	Construction and Photocurrent of Light-harvesting Polypeptides/Zinc BacteriochlorophyllaComplex in Lipid Bilayers. Chemistry Letters, 2003, 32, 852-853.	1.3	15
46	Construction of Photosynthetic Antenna Complex Using Light-harvesting Polypeptide-α from Photosynthetic Bacteria,R. rubrumwith Zinc Substituted Bacteriochlorophylla. Chemistry Letters, 2003, 32, 216-217.	1.3	24
47	Molecular Assembly of Zinc–Nickel Hybrid Porphyrin Dimer Using Synthetic 4α-Helix Polypeptides. Chemistry Letters, 2002, 31, 848-849.	1.3	3
48	Potential Modulation Reflectance of Self-Assembled Naphthoquinone Monolayers on Gold Electrodes. Electrochemistry, 1999, 67, 1184-1186.	1,4	12
49	Manganese Porphyrin-Mediated Electron Transfer across a Liposomal Membrane and on an Electrode Modified with a Lipid Bilayer Membrane. Langmuir, 1998, 14, 407-416.	3 . 5	20