Stefan Niewiesk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9329772/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Respiratory Syncytial Virus Infection Modeled in Aging Cotton Rats (Sigmodon hispidus) and Mice (Mus musculus). Advances in Virology, 2022, 2022, 1-6.	0.5	4
2	A Novel Live Attenuated Respiratory Syncytial Virus Vaccine Candidate with Mutations in the L Protein SAM Binding Site and the G Protein Cleavage Site Is Protective in Cotton Rats and a Rhesus Macaque. Journal of Virology, 2021, 95, .	1.5	2
3	Immunogenicity and inflammatory properties of respiratory syncytial virus attachment G protein in cotton rats. PLoS ONE, 2021, 16, e0246770.	1.1	3
4	Mucosal Delivery of Recombinant Vesicular Stomatitis Virus Vectors Expressing Envelope Proteins of Respiratory Syncytial Virus Induces Protective Immunity in Cotton Rats. Journal of Virology, 2021, 95, .	1.5	4
5	The academic leadership framework: A guide for systematic assessment and improvement of academic administrative work. Global Business and Organizational Excellence, 2021, 40, 50-63.	4.2	6
6	Engineering Protease-Resistant Peptides to Inhibit Human Parainfluenza Viral Respiratory Infection. Journal of the American Chemical Society, 2021, 143, 5958-5966.	6.6	14
7	Single-chain variable fragment antibody constructs neutralize measles virus infection in vitro and in vivo. Cellular and Molecular Immunology, 2021, 18, 1835-1837.	4.8	3
8	CX3CR1 Is a Receptor for Human Respiratory Syncytial Virus in Cotton Rats. Journal of Virology, 2021, 95, e0001021.	1.5	13
9	Inhibition of Measles Viral Fusion Is Enhanced by Targeting Multiple Domains of the Fusion Protein. ACS Nano, 2021, 15, 12794-12803.	7.3	9
10	Nonsteroidal anti-inflammatory drugs restore immune function to respiratory syncytial virus in geriatric cotton rats (Sigmodon hispidus). Virology, 2021, 563, 28-37.	1.1	1
11	Human parainfluenza virus evolution during lung infection of immunocompromised individuals promotes viral persistence. Journal of Clinical Investigation, 2021, 131, .	3.9	12
12	Coexpression of respiratory syncytial virus (RSV) fusion (F) protein and attachment glycoprotein (G) in a vesicular stomatitis virus (VSV) vector system provides synergistic effects against RSV infection in a cotton rat model. Vaccine, 2021, 39, 6817-6828.	1.7	3
13	Viral RNA N6-methyladenosine modification modulates both innate and adaptive immune responses of human respiratory syncytial virus. PLoS Pathogens, 2021, 17, e1010142.	2.1	12
14	Stable Attenuation of Human Respiratory Syncytial Virus for Live Vaccines by Deletion and Insertion of Amino Acids in the Hinge Region between the mRNA Capping and Methyltransferase Domains of the Large Polymerase Protein. Journal of Virology, 2020, 94, .	1.5	3
15	Pulmonary function analysis in cotton rats after respiratory syncytial virus infection. PLoS ONE, 2020, 15, e0237404.	1.1	10
16	N6-methyladenosine modification enables viral RNA to escape recognition by RNA sensor RIG-I. Nature Microbiology, 2020, 5, 584-598.	5.9	169
17	Pulmonary function analysis in cotton rats after respiratory syncytial virus infection. , 2020, 15, e0237404.		0
18	Pulmonary function analysis in cotton rats after respiratory syncytial virus infection. , 2020, 15, $e0237404$		0

e0237404.

Stefan Niewiesk

#	Article	IF	CITATIONS
19	Pulmonary function analysis in cotton rats after respiratory syncytial virus infection. , 2020, 15, e0237404.		0
20	Pulmonary function analysis in cotton rats after respiratory syncytial virus infection. , 2020, 15, e0237404.		0
21	Viral N6-methyladenosine upregulates replication and pathogenesis of human respiratory syncytial virus. Nature Communications, 2019, 10, 4595.	5.8	64
22	Measles Virus Bearing Measles Inclusion Body Encephalitis-Derived Fusion Protein Is Pathogenic after Infection via the Respiratory Route. Journal of Virology, 2019, 93, .	1.5	24
23	Mathematical modelling identifies the role of adaptive immunity as a key controller of respiratory syncytial virus in cotton rats. Journal of the Royal Society Interface, 2019, 16, 20190389.	1.5	19
24	HTLV-1 viral oncogene HBZ drives bone destruction in adult T cell leukemia. JCI Insight, 2019, 4, .	2.3	12
25	Production of Humanized Mice Through Stem Cell Transfer. Current Protocols in Mouse Biology, 2018, 8, 17-27.	1.2	16
26	Role of Wild-type and Recombinant Human T-cell Leukemia Viruses in Lymphoproliferative Disease in Humanized NSG Mice. Comparative Medicine, 2018, 68, 4-14.	0.4	11
27	Characterization of Cotton Rat () Eosinophils, Including Their Response to Respiratory Syncytial Virus Infection. Comparative Medicine, 2018, 68, 31-40.	0.4	10
28	Broad spectrum antiviral activity for paramyxoviruses is modulated by biophysical properties of fusion inhibitory peptides. Scientific Reports, 2017, 7, 43610.	1.6	45
29	HTLV-1 viral oncogene HBZ induces osteolytic bone disease in transgenic mice. Oncotarget, 2017, 8, 69250-69263.	0.8	16
30	Models of Virus-Induced Carcinogenesis and Oncolytic Viruses. ILAR Journal, 2016, 57, 1-2.	1.8	0
31	Characterization of New Zealand White Rabbit Gut-Associated Lymphoid Tissues and Use as Viral Oncology Animal Model. ILAR Journal, 2016, 57, 34-43.	1.8	10
32	Animals Models of Human T Cell Leukemia Virus Type I Leukemogenesis. ILAR Journal, 2016, 57, 3-11.	1.8	14
33	Features of Circulating Parainfluenza Virus Required for Growth in Human Airway. MBio, 2016, 7, e00235.	1.8	18
34	Phosphorylation of Human Metapneumovirus M2-1 Protein Upregulates Viral Replication and Pathogenesis. Journal of Virology, 2016, 90, 7323-7338.	1.5	11
35	Function and expression of CD1d and invariant natural killer Tâ€cell receptor in the cotton rat (<i>Sigmodon hispidus</i>). Immunology, 2015, 146, 618-629.	2.0	4
36	Traumatic spinal cord injury in mice with human immune systems. Experimental Neurology, 2015, 271, 432-444.	2.0	13

STEFAN NIEWIESK

#	Article	IF	CITATIONS
37	Small Animal Models for Human Metapneumovirus: Cotton Rat is More Permissive than Hamster and Mouse. Pathogens, 2014, 3, 633-655.	1.2	13
38	Maternal Antibodies: Clinical Significance, Mechanism of Interference with Immune Responses, and Possible Vaccination Strategies. Frontiers in Immunology, 2014, 5, 446.	2.2	370
39	Heat Shock Protein 70 Enhances Mucosal Immunity against Human Norovirus When Coexpressed from a Vesicular Stomatitis Virus Vector. Journal of Virology, 2014, 88, 5122-5137.	1.5	20
40	Circulating Clinical Strains of Human Parainfluenza Virus Reveal Viral Entry Requirements for <i>In Vivo</i> Infection. Journal of Virology, 2014, 88, 13495-13502.	1.5	27
41	Rational Design of Human Metapneumovirus Live Attenuated Vaccine Candidates by Inhibiting Viral mRNA Cap Methyltransferase. Journal of Virology, 2014, 88, 11411-11429.	1.5	35
42	Synergistic induction of interferon \hat{l}_{\pm} through TLR-3 and TLR-9 agonists stimulates immune responses against measles virus in neonatal cotton rats. Vaccine, 2014, 32, 265-270.	1.7	13
43	Success of measles virotherapy in ATL depends on type I interferon secretion and responsiveness. Virus Research, 2014, 189, 206-213.	1.1	7
44	Cotton Rat (Sigmodon hispidus) Signaling Lymphocyte Activation Molecule (CD150) Is an Entry Receptor for Measles Virus. PLoS ONE, 2014, 9, e110120.	1.1	7
45	Synergistic Induction of Interferon α through TLR-3 and TLR-9 Agonists Identifies CD21 as Interferon α Receptor for the B Cell Response. PLoS Pathogens, 2013, 9, e1003233.	2.1	25
46	The cotton rat (Sigmodon hispidus) as an animal model for respiratory tract infections with human pathogens. Lab Animal, 2013, 42, 170-176.	0.2	34
47	Human T-Cell Leukemia Virus Type 2 Antisense Viral Protein 2 Is Dispensable for <i>In Vitro</i> Immortalization but Functions To Repress Early Virus Replication <i>In Vivo</i> Journal of Virology, 2012, 86, 8412-8421.	1.5	42
48	Measles virotherapy in a mouse model of adult T-cell leukaemia/lymphoma. Journal of General Virology, 2011, 92, 1458-1466.	1.3	16
49	Insights into the regulatory mechanism controlling the inhibition of vaccine-induced seroconversion by maternal antibodies. Blood, 2011, 117, 6143-6151.	0.6	75
50	Sidestepping maternal antibody: a lesson from measles virus vaccination. Expert Review of Clinical Immunology, 2011, 7, 557-559.	1.3	8
51	Induction of Type I Interferon Secretion through Recombinant Newcastle Disease Virus Expressing Measles Virus Hemagglutinin Stimulates Antibody Secretion in the Presence of Maternal Antibodies. Journal of Virology, 2011, 85, 200-207.	1.5	18
52	Cytokine Imbalance after Measles Virus Infection Has No Correlation with Immune Suppression. Journal of Virology, 2009, 83, 7244-7251.	1.5	12
53	Sorting signals in the measles virus wild-type glycoproteins differently influence virus spread in polarized epithelia and lymphocytes. Journal of General Virology, 2009, 90, 2474-2482.	1.3	9
54	Measles Virus-Specific CD4 T-Cell Activity Does Not Correlate with Protection against Lung Infection or Viral Clearance. Journal of Virology, 2007, 81, 8571-8578.	1.5	24

Stefan Niewiesk

#	Article	IF	CITATIONS
55	Effector CD8+T Cells Are Suppressed by Measles Virus Infection during Delayed Type Hypersensitivity Reaction. Viral Immunology, 2004, 17, 604-608.	0.6	10
56	Extent of Measles Virus Spread and Immune Suppression Differentiates between Wild-Type and Vaccine Strains in the Cotton Rat Model (Sigmodon hispidus). Journal of Virology, 2003, 77, 150-158.	1.5	36
57	Successful mucosal immunization of cotton rats in the presence of measles virus-specific antibodies depends on degree of attenuation of vaccine vector and virus dose. Journal of General Virology, 2003, 84, 2145-2151.	1.3	43
58	Diversifying animal models: the use of hispid cotton rats (Sigmodon hispidus) in infectious diseases. Laboratory Animals, 2002, 36, 357-372.	0.5	109
59	Vaccination with recombinant modified vaccinia virus Ankara protects against measles virus infection in the mouse and cotton rat model. Vaccine, 2001, 19, 2764-2768.	1.7	31
60	Disruption of Akt kinase activation is important for immunosuppression induced by measles virus. Nature Medicine, 2001, 7, 725-731.	15.2	120
61	Measles virus and canine distemper virus target proteins into a TAP-independent MHC class I-restricted antigen-processing pathway. Journal of General Virology, 2001, 82, 441-447.	1.3	26
62	The haemagglutinin protein is an important determinant of measles virus tropism for dendritic cells in vitro. Journal of General Virology, 2001, 82, 1835-1844.	1.3	56
63	Successful Vaccine-Induced Seroconversion by Single-Dose Immunization in the Presence of Measles Virus-Specific Maternal Antibodies. Journal of Virology, 2000, 74, 4652-4657.	1.5	96
64	Role of CD4+ and CD8+ T cells in the prevention of measles virus-induced encephalitis in mice. Journal of General Virology, 2000, 81, 2707-2713.	1.3	25
65	DNA vaccination with both the haemagglutinin and fusion proteins but not the nucleocapsid protein protects against experimental measles virus infection. Microbiology (United Kingdom), 2000, 81, 1321-1325.	0.7	26
66	Successful Vaccine-Induced Seroconversion by Single-Dose Immunization in the Presence of Measles Virus-Specific Maternal Antibodies. Journal of Virology, 2000, 74, 4652-4657.	1.5	6
67	Measles virus-induced immunosuppression in cotton rats is associated with cell cycle retardation in uninfected lymphocytes. Journal of General Virology, 1999, 80, 2023-2029.	1.3	50