Michele Gattullo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9329764/publications.pdf

Version: 2024-02-01

471371 395590 1,321 38 17 33 citations h-index g-index papers 39 39 39 955 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	What, How, and Why are Visual Assets Used in Industrial Augmented Reality? A Systematic Review and Classification in Maintenance, Assembly, and Training (From 1997 to 2019). IEEE Transactions on Visualization and Computer Graphics, 2022, 28, 1443-1456.	2.9	50
2	Minimal AR: visual asset optimization for the authoring of augmented reality work instructions in manufacturing. International Journal of Advanced Manufacturing Technology, 2022, 119, 1769-1784.	1.5	22
3	Mixed Reality in STEM Didactics: Case Study of Assembly Drawings of Complex Machines. Lecture Notes in Mechanical Engineering, 2022, , 157-164.	0.3	0
4	Cinematic Virtual Reality as a Rehabilitative Tool in Subjects Affected by Schizophrenia. Lecture Notes in Mechanical Engineering, 2022, , 149-156.	0.3	0
5	CompassbAR: A Technique for Visualizing Out-of-View Objects in a Mixed Reality Environment. Lecture Notes in Mechanical Engineering, 2022, , 141-148.	0.3	3
6	A Coarse-Grained Lattice Spring Model to Characterize Nanoindented Stem Cells. Lecture Notes in Mechanical Engineering, 2022, , 623-629.	0.3	1
7	Design of a Mixed Reality Application for STEM Distance Education Laboratories. Computers, 2022, 11, 50.	2.1	10
8	Geometry optimization of scaffolds for bone tissue engineering., 2021,, 277-301.		0
9	Nanoindentation of mesenchymal stem cells using atomic force microscopy: effect of adhesive cell-substrate structures. Nanotechnology, 2021, 32, 215706.	1.3	5
10	Sailing Data Visualization in Augmented Reality: Systematic Review, Issues, and Perspectives. Marine Technology Society Journal, 2021, 55, 64-80.	0.3	4
11	Augmented reality for maritime navigation data visualisation: a systematic review, issues and perspectives. Journal of Navigation, 2021, 74, 1073-1090.	1.0	22
12	Positive Computing in Virtual Reality Industrial Training. , 2021, , .		1
13	An Algorithm to Optimize the Micro-Geometrical Dimensions of Scaffolds with Spherical Pores. Materials, 2020, 13, 4062.	1.3	8
14	A Body Tracking-Based Low-Cost Solution for Monitoring Workers' Hygiene Best Practices during Pandemics. Sensors, 2020, 20, 6149.	2.1	8
15	Improving the "real life―management of schizophrenia spectrum disorders by LAI antipsychotics: A one-year mirror-image retrospective study in community mental health services. PLoS ONE, 2020, 15, e0230051.	1.1	15
16	Towards Next Generation Technical Documentation in Augmented Reality Using a Context-Aware Information Manager. Applied Sciences (Switzerland), 2020, 10, 780.	1.3	7
17	Mechanobiological Approach to Design and Optimize Bone Tissue Scaffolds 3D Printed with Fused Deposition Modeling: A Feasibility Study. Materials, 2020, 13, 648.	1.3	27
18	AUTOMATIC ERGONOMIC POSTURAL RISK MONITORING ON THE FACTORY SHOPFLOOR â€'THE ERGOSENTINEL TOOL. Procedia Manufacturing, 2020, 42, 97-103.	1.9	27

#	Article	IF	CITATIONS
19	Informing the Use of Visual Assets in Industrial Augmented Reality. Lecture Notes in Mechanical Engineering, 2020, , 106-117.	0.3	14
20	Design preferences on Industrial Augmented Reality: a survey with potential technical writers. , 2020, , .		18
21	A User-Centered Framework for Designing Midair Gesture Interfaces. IEEE Transactions on Human-Machine Systems, 2019, 49, 421-429.	2.5	16
22	A Context-Aware Technical Information Manager for Presentation in Augmented Reality., 2019,,.		4
23	Irregular Load Adapted Scaffold Optimization: A Computational Framework Based on Mechanobiological Criteria. ACS Biomaterials Science and Engineering, 2019, 5, 5392-5411.	2.6	19
24	Towards augmented reality manuals for industry 4.0: A methodology. Robotics and Computer-Integrated Manufacturing, 2019, 56, 276-286.	6.1	174
25	Exploiting Augmented Reality to Enhance Piping and Instrumentation Diagrams for Information Retrieval Tasks in Industry 4.0 Maintenance. Lecture Notes in Computer Science, 2019, , 170-180.	1.0	9
26	Converting maintenance actions into standard symbols for Augmented Reality applications in Industry 4.0. Computers in Industry, 2018, 98, 68-79.	5.7	92
27	Comparison of the mechanobiological performance of bone tissue scaffolds based on different unit cell geometries. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 83, 28-45.	1.5	49
28	Enhancing user engagement through the user centric design of a mid-air gesture-based interface for the navigation of virtual-tours in cultural heritage expositions. Journal of Cultural Heritage, 2018, 32, 186-197.	1.5	26
29	Evaluating the effectiveness of spatial augmented reality in smart manufacturing: a solution for manual working stations. International Journal of Advanced Manufacturing Technology, 2018, 94, 509-521.	1.5	165
30	Experiencing the Sights, Smells, Sounds, and Climate of Southern Italy in VR. IEEE Computer Graphics and Applications, 2017, 37, 19-25.	1.0	21
31	Predicting Text Legibility over Textured Digital Backgrounds for a Monocular Optical See-Through Display. Presence: Teleoperators and Virtual Environments, 2017, 26, 1-15.	0.3	3
32	Supporting Remote Maintenance in Industry 4.0 through Augmented Reality. Procedia Manufacturing, 2017, 11, 1296-1302.	1.9	164
33	From Paper Manual to AR Manual: Do We Still Need Text?. Procedia Manufacturing, 2017, 11, 1303-1310.	1.9	13
34	Legibility in Industrial AR: Text Style, Color Coding, and Illuminance. IEEE Computer Graphics and Applications, 2015, 35, 52-61.	1.0	39
35	Text legibility for projected Augmented Reality on industrial workbenches. Computers in Industry, 2015, 70, 70-78.	5.7	37
36	Effect of Text Outline and Contrast Polarity on AR Text Readability in Industrial Lighting. IEEE Transactions on Visualization and Computer Graphics, 2014, 21, 1-1.	2.9	17

3

MICHELE GATTULLO

#	Article	IF	CITATIONS
37	Text Readability in Head-Worn Displays: Color and Style Optimization in Video versus Optical See-Through Devices. IEEE Transactions on Visualization and Computer Graphics, 2014, 20, 125-139.	2.9	62
38	Augmented reality on large screen for interactive maintenance instructions. Computers in Industry, 2014, 65, 270-278.	5.7	158