## Rob J S Wilson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9329695/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Regional Patterns of Late Medieval and Early Modern European Building Activity Revealed by Felling<br>Dates. Frontiers in Ecology and Evolution, 2022, 9, .                                                   | 1.1 | 8         |
| 2  | Prospects for dendroanatomy in paleoclimatology – a case study on <i>Picea<br/>engelmannii</i> from the Canadian Rockies. Climate of the Past, 2022, 18, 1151-1168.                                           | 1.3 | 7         |
| 3  | Orbital Forcing Strongly Influences Seasonal Temperature Trends During the Last Millennium.<br>Geophysical Research Letters, 2021, 48, e2020GL088776.                                                         | 1.5 | 10        |
| 4  | A preliminary study into the use of tree-ring and foliar geochemistry as bio-indicators for vehicular<br>NO <sub>x</sub> pollution in Malta. Isotopes in Environmental and Health Studies, 2021, 57, 301-315. | 0.5 | 3         |
| 5  | The influence of decision-making in tree ring-based climate reconstructions. Nature Communications, 2021, 12, 3411.                                                                                           | 5.8 | 59        |
| 6  | The unidentified eruption of 1809: a climatic cold case. Climate of the Past, 2021, 17, 1455-1482.                                                                                                            | 1.3 | 19        |
| 7  | Accelerated Recent Warming and Temperature Variability Over the Past Eight Centuries in the Central<br>Asian Altai From Blue Intensity in Tree Rings. Geophysical Research Letters, 2021, 48, e2021GL092933.  | 1.5 | 15        |
| 8  | I-BIND: International Blue intensity network development working group. Dendrochronologia, 2021,<br>68, 125859.                                                                                               | 1.0 | 16        |
| 9  | Evaluating the dendroclimatological potential of blue intensity on multiple conifer species from Tasmania and New Zealand. Biogeosciences, 2021, 18, 6393-6421.                                               | 1.3 | 13        |
| 10 | Complexity in crisis: The volcanic cold pulse of the 1690s and the consequences of Scotland's failure to cope. Journal of Volcanology and Geothermal Research, 2020, 389, 106746.                             | 0.8 | 14        |
| 11 | Delta blue intensity vs. maximum density: A case study using Pinus uncinata in the Pyrenees.<br>Dendrochronologia, 2020, 61, 125706.                                                                          | 1.0 | 16        |
| 12 | Improved dendroclimatic calibration using blue intensity in the southern Yukon. Holocene, 2019, 29, 1817-1830.                                                                                                | 0.9 | 42        |
| 13 | Coupled Modes of North Atlantic Oceanâ€Atmosphere Variability and the Onset of the Little Ice Age.<br>Geophysical Research Letters, 2019, 46, 12417-12426.                                                    | 1.5 | 10        |
| 14 | Scientific Merits and Analytical Challenges of Treeâ€Ring Densitometry. Reviews of Geophysics, 2019, 57, 1224-1264.                                                                                           | 9.0 | 98        |
| 15 | Yellow-cedar blue intensity tree-ring chronologies as records of climate in Juneau, Alaska, USA.<br>Canadian Journal of Forest Research, 2019, 49, 1483-1492.                                                 | 0.8 | 16        |
| 16 | Effects of Memory Biases on Variability of Temperature Reconstructions. Journal of Climate, 2019, 32, 8713-8731.                                                                                              | 1.2 | 28        |
| 17 | Disproportionately strong climate forcing from extratropical explosive volcanic eruptions. Nature<br>Geoscience, 2019, 12, 100-107.                                                                           | 5.4 | 79        |
| 18 | Tree rings reveal globally coherent signature of cosmogenic radiocarbon events in 774 and 993 CE.<br>Nature Communications, 2018, 9, 3605.                                                                    | 5.8 | 98        |

| #  | Article                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Blue intensity from a tropical conifer's annual rings for climate reconstruction: An ecophysiological perspective. Dendrochronologia, 2018, 50, 10-22.                                  | 1.0 | 46        |
| 20 | A Combined Tree Ring and Vegetation Model Assessment of European Forest Growth Sensitivity to Interannual Climate Variability. Global Biogeochemical Cycles, 2018, 32, 1226-1240.       | 1.9 | 54        |
| 21 | Influence of sampling and disturbance history on climatic sensitivity of temperature-limited conifers.<br>Holocene, 2018, 28, 1574-1587.                                                | 0.9 | 26        |
| 22 | Large-scale, millennial-length temperature reconstructions from tree-rings. Dendrochronologia, 2018, 50, 81-90.                                                                         | 1.0 | 83        |
| 23 | Facilitating tree-ring dating of historic conifer timbers using Blue Intensity. Journal of<br>Archaeological Science, 2017, 78, 99-111.                                                 | 1.2 | 43        |
| 24 | Last millennium Northern Hemisphere summer temperatures from tree rings: Part II, spatially resolved reconstructions. Quaternary Science Reviews, 2017, 163, 1-22.                      | 1.4 | 165       |
| 25 | Reconstructing 800Âyears of summer temperatures in Scotland from tree rings. Climate Dynamics, 2017,<br>49, 2951-2974.                                                                  | 1.7 | 53        |
| 26 | Spatial reconstruction of Scottish summer temperatures from tree rings. International Journal of Climatology, 2017, 37, 1540-1556.                                                      | 1.5 | 26        |
| 27 | Dendrochronologically Dated Pine Buildings from Scotland: The SCOT2K Native Pine<br>Dendrochronology Project. Vernacular Architecture, 2017, 48, 23-43.                                 | 0.3 | 6         |
| 28 | Experiments based on blue intensity for reconstructing North Pacific temperatures along the Gulf of Alaska. Climate of the Past, 2017, 13, 1007-1022.                                   | 1.3 | 34        |
| 29 | Detection and removal of disturbance trends in tree-ring series for dendroclimatology. Canadian<br>Journal of Forest Research, 2016, 46, 387-401.                                       | 0.8 | 29        |
| 30 | Last millennium northern hemisphere summer temperatures from tree rings: Part I: The long term context. Quaternary Science Reviews, 2016, 134, 1-18.                                    | 1.4 | 314       |
| 31 | Revising midlatitude summer temperatures back to A.D. 600 based on a wood density network.<br>Geophysical Research Letters, 2015, 42, 4556-4562.                                        | 1.5 | 134       |
| 32 | Old World megadroughts and pluvials during the Common Era. Science Advances, 2015, 1, e1500561.                                                                                         | 4.7 | 403       |
| 33 | Tree-ring reconstructed temperature index for coastal northern Japan: implications for western<br>North Pacific variability. International Journal of Climatology, 2015, 35, 3713-3720. | 1.5 | 14        |
| 34 | Blue Intensity for dendroclimatology: The BC blues: A case study from British Columbia, Canada.<br>Holocene, 2014, 24, 1428-1438.                                                       | 0.9 | 67        |
| 35 | Surface air temperature variability reconstructed with tree rings for the Gulf of Alaska over the past<br>1200 years. Holocene, 2014, 24, 198-208.                                      | 0.9 | 61        |
| 36 | Blue intensity for dendroclimatology: Should we have the blues? Experiments from Scotland.<br>Dendrochronologia, 2014, 32, 191-204.                                                     | 1.0 | 101       |

| #  | Article                                                                                                                                                                                        | lF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Floodplain ecohydrology: Climatic, anthropogenic, and local physical controls on partitioning of water sources to riparian trees. Water Resources Research, 2014, 50, 4490-4513.               | 1.7 | 46        |
| 38 | A tree-ring reconstruction of the South Asian summer monsoon index over the past millennium.<br>Scientific Reports, 2014, 4, 6739.                                                             | 1.6 | 69        |
| 39 | Contrasting waterâ€uptake and growth responses to drought in coâ€occurring riparian tree species.<br>Ecohydrology, 2013, 6, 402-412.                                                           | 1.1 | 82        |
| 40 | A millennial long March–July precipitation reconstruction for southern-central England. Climate<br>Dynamics, 2013, 40, 997-1017.                                                               | 1.7 | 88        |
| 41 | A tree-ring reconstruction of East Anglian (UK) hydroclimate variability over the last millennium.<br>Climate Dynamics, 2013, 40, 1019-1039.                                                   | 1.7 | 55        |
| 42 | Dendroclimatic signals deduced from riparian versus upland forest interior pines in North Karelia,<br>Finland. Ecological Research, 2013, 28, 1019-1028.                                       | 0.7 | 14        |
| 43 | Volcanic cooling signal in tree ring temperature records for the past millennium. Journal of<br>Geophysical Research D: Atmospheres, 2013, 118, 9000-9010.                                     | 1.2 | 94        |
| 44 | Site- and species-specific responses of forest growth to climate across the European continent.<br>Global Ecology and Biogeography, 2013, 22, 706-717.                                         | 2.7 | 297       |
| 45 | Reconstructions of surface ocean conditions from the northeast Atlantic and Nordic seas during the last millennium. Holocene, 2013, 23, 921-935.                                               | 0.9 | 49        |
| 46 | Quantifying uncertainty in isotope dendroclimatology. Holocene, 2013, 23, 1221-1226.                                                                                                           | 0.9 | 39        |
| 47 | Decadal–Interdecadal Climate Variability over Antarctica and Linkages to the Tropics: Analysis of Ice<br>Core, Instrumental, and Tropical Proxy Data. Journal of Climate, 2012, 25, 7421-7441. | 1.2 | 44        |
| 48 | The Impact of Industrial SO2 Pollution on North Bohemia Conifers. Water, Air, and Soil Pollution, 2012, 223, 5727-5744.                                                                        | 1.1 | 41        |
| 49 | Orbital forcing of tree-ring data. Nature Climate Change, 2012, 2, 862-866.                                                                                                                    | 8.1 | 232       |
| 50 | Lake sonar surveys and the search for sub-fossil wood. Dendrochronologia, 2012, 30, 61-65.                                                                                                     | 1.0 | 2         |
| 51 | Regional climatic and North Atlantic Oscillation signatures in West Virginia red cedar over the past<br>millennium. Global and Planetary Change, 2012, 84-85, 8-13.                            | 1.6 | 14        |
| 52 | Reconstructing Holocene climate from tree rings: The potential for a long chronology from the<br>Scottish Highlands. Holocene, 2012, 22, 3-11.                                                 | 0.9 | 31        |
| 53 | Tree rings and volcanic cooling. Nature Geoscience, 2012, 5, 836-837.                                                                                                                          | 5.4 | 137       |
| 54 | High resolution δ18O and δ13C records from an annually laminated Scottish stalagmite and relationship<br>with last millennium climate. Global and Planetary Change, 2011, 79, 303-311.         | 1.6 | 45        |

| #  | Article                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | An experimental 392-year documentary-based multi-proxy (vine and grain) reconstruction of May-July<br>temperatures for Kőszeg, West-Hungary. International Journal of Biometeorology, 2011, 55, 595-611.                                                     | 1.3 | 45        |
| 56 | Dendroclimatology from Regional to Continental Scales: Understanding Regional Processes to<br>Reconstruct Large-Scale Climatic Variations Across the Western Americas. Developments in<br>Paleoenvironmental Research, 2011, , 175-227.                      | 7.5 | 20        |
| 57 | Five centuries of Stockholm winter/spring temperatures reconstructed from documentary evidence and instrumental observations. Climatic Change, 2010, 101, 109-141.                                                                                           | 1.7 | 87        |
| 58 | Monthly, seasonal and annual temperature reconstructions for Central Europe derived from<br>documentary evidence and instrumental records since AD 1500. Climatic Change, 2010, 101, 69-107.                                                                 | 1.7 | 189       |
| 59 | Circulation dynamics and its influence on European and Mediterranean January–April climate over the past half millennium: results and insights from instrumental data, documentary evidence and coupled climate models. Climatic Change, 2010, 101, 201-234. | 1.7 | 63        |
| 60 | European temperature records of the past five centuries based on documentary/instrumental information compared to climate simulations. Climatic Change, 2010, 101, 143-168.                                                                                  | 1.7 | 43        |
| 61 | Reconstructing ENSO: the influence of method, proxy data, climate forcing and teleconnections.<br>Journal of Quaternary Science, 2010, 25, 62-78.                                                                                                            | 1.1 | 145       |
| 62 | A noodle, hockey stick, and spaghetti plate: a perspective on highâ€resolution paleoclimatology. Wiley<br>Interdisciplinary Reviews: Climate Change, 2010, 1, 507-516.                                                                                       | 3.6 | 68        |
| 63 | Exploring for senescence signals in native scots pine (Pinus sylvestris L.) in the Scottish Highlands.<br>Forest Ecology and Management, 2010, 260, 321-330.                                                                                                 | 1.4 | 12        |
| 64 | The potential of Arctica islandica growth records to reconstruct coastal climate in north west<br>Scotland, UK. Quaternary Science Reviews, 2010, 29, 1602-1613.                                                                                             | 1.4 | 25        |
| 65 | Assessing the spatial signature of European climate reconstructions. Climate Research, 2010, 41, 125-130.                                                                                                                                                    | 0.4 | 47        |
| 66 | The impact of volcanic forcing on tropical temperatures during the past four centuries. Nature Geoscience, 2009, 2, 51-56.                                                                                                                                   | 5.4 | 99        |
| 67 | Tree growth and inferred temperature variability at the North American Arctic treeline. Global and<br>Planetary Change, 2009, 65, 71-82.                                                                                                                     | 1.6 | 57        |
| 68 | El Niño and Indian Ocean influences on Indonesian drought: implications for forecasting rainfall and<br>crop productivity. International Journal of Climatology, 2008, 28, 611-616.                                                                          | 1.5 | 51        |
| 69 | Pacific and Indian Ocean climate signals in a treeâ€ring record of Java monsoon drought. International<br>Journal of Climatology, 2008, 28, 1889-1901.                                                                                                       | 1.5 | 33        |
| 70 | Testing for treeâ€ring divergence in the European Alps. Global Change Biology, 2008, 14, 2443-2453.                                                                                                                                                          | 4.2 | 141       |
| 71 | On the â€~Divergence Problem' in Northern Forests: A review of the tree-ring evidence and possible<br>causes. Global and Planetary Change, 2008, 60, 289-305.                                                                                                | 1.6 | 646       |
| 72 | Multiple stable isotopes from oak trees in southwestern Scotland and the potential for stable isotope dendroclimatology in maritime climatic regions. Chemical Geology, 2008, 252, 62-71.                                                                    | 1.4 | 119       |

| #  | Article                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Documentary data provide evidence of Stockholm average winter to spring temperatures in the eighteenth and nineteenth centuries. Holocene, 2008, 18, 333-343.                                    | 0.9 | 38        |
| 74 | A matter of divergence: Tracking recent warming at hemispheric scales using tree ring data. Journal of<br>Geophysical Research, 2007, 112, .                                                     | 3.3 | 136       |
| 75 | Uniform growth trends among central Asian low- and high-elevation juniper tree sites. Trees -<br>Structure and Function, 2007, 21, 141-150.                                                      | 0.9 | 76        |
| 76 | Cycles and shifts: 1,300Âyears of multi-decadal temperature variability in the Gulf of Alaska. Climate<br>Dynamics, 2007, 28, 425-440.                                                           | 1.7 | 87        |
| 77 | Monsoon drought over Java, Indonesia, during the past two centuries. Geophysical Research Letters, 2006, 33, .                                                                                   | 1.5 | 77        |
| 78 | Two-hundred-fifty years of reconstructed and modeled tropical temperatures. Journal of Geophysical<br>Research, 2006, 111, .                                                                     | 3.3 | 74        |
| 79 | On the long-term context for late twentieth century warming. Journal of Geophysical Research, 2006, 111, .                                                                                       | 3.3 | 323       |
| 80 | The reconstructed Indonesian warm pool sea surface temperatures from tree rings and corals:<br>Linkages to Asian monsoon drought and El Niño-Southern Oscillation. Paleoceanography, 2006, 21, . | 3.0 | 45        |
| 81 | Increased Eurasian-tropical temperature amplitude difference in recent centuries: Implications for the Asian monsoon. Geophysical Research Letters, 2006, 33, .                                  | 1.5 | 25        |
| 82 | On the Asian expression of the PDO. International Journal of Climatology, 2006, 26, 1607-1617.                                                                                                   | 1.5 | 143       |
| 83 | Spatial reconstruction of summer temperatures in Central Europe for the last 500 years using annually resolved proxy records: problems and opportunities. Boreas, 2005, 34, 490-497.             | 1.2 | 17        |
| 84 | Synchronous variability changes in Alpine temperature and tree-ring data over the past two centuries.<br>Boreas, 2005, 34, 498-505.                                                              | 1.2 | 24        |
| 85 | A 500 year dendroclimatic reconstruction of spring-summer precipitation from the lower Bavarian<br>Forest region, Germany. International Journal of Climatology, 2005, 25, 611-630.              | 1.5 | 110       |
| 86 | Temperature variability over the past millennium inferred from Northwestern Alaska tree rings.<br>Climate Dynamics, 2005, 24, 227-236.                                                           | 1.7 | 75        |
| 87 | Summer temperatures in the Canadian Rockies during the last millennium: a revised record. Climate Dynamics, 2005, 24, 131-144.                                                                   | 1.7 | 186       |
| 88 | Tropical–North Pacific Climate Linkages over the Past Four Centuries*. Journal of Climate, 2005, 18, 5253-5265.                                                                                  | 1.2 | 79        |
| 89 | A reconstructed Siberian High index since A.D. 1599 from Eurasian and North American tree rings.<br>Geophysical Research Letters, 2005, 32, .                                                    | 1.5 | 57        |
| 90 | Climate: past ranges and future changes. Quaternary Science Reviews, 2005, 24, 2164-2166.                                                                                                        | 1.4 | 95        |

| #   | Article                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Effect of scaling and regression on reconstructed temperature amplitude for the past millennium.<br>Geophysical Research Letters, 2005, 32, n/a-n/a.                                                  | 1.5 | 188       |
| 92  | On the variability of ENSO over the past six centuries. Geophysical Research Letters, 2005, 32, .                                                                                                     | 1.5 | 139       |
| 93  | On the long-term interannual variability of the east Asian winter monsoon. Geophysical Research<br>Letters, 2005, 32, .                                                                               | 1.5 | 29        |
| 94  | Temporal instability in tree-growth/climate response in the Lower Bavarian Forest region:<br>implications for dendroclimatic reconstruction. Trees - Structure and Function, 2004, 18, 19-28.         | 0.9 | 122       |
| 95  | Violins and climate. Theoretical and Applied Climatology, 2004, 77, 9-24.                                                                                                                             | 1.3 | 31        |
| 96  | Inferred summer precipitation for southern Ontario back to AD 610, as reconstructed from ring widths of Thuja occidentalis. Canadian Journal of Forest Research, 2004, 34, 2541-2553.                 | 0.8 | 28        |
| 97  | Climate reconstructions: Low-frequency ambition and high-frequency ratification. Eos, 2004, 85, 113.                                                                                                  | 0.1 | 119       |
| 98  | Reconstructed warm season temperatures for Nome, Seward Peninsula, Alaska. Geophysical Research<br>Letters, 2004, 31, n/a-n/a.                                                                        | 1.5 | 21        |
| 99  | Utilising historical tree-ring data for dendroclimatology: A case study from the Bavarian Forest,<br>Germany. Dendrochronologia, 2004, 21, 53-68.                                                     | 1.0 | 36        |
| 100 | Temperature-sensitive Tien Shan tree ring chronologies show multi-centennial growth trends.<br>Climate Dynamics, 2003, 21, 699-706.                                                                   | 1.7 | 121       |
| 101 | Dendroclimatic reconstruction of maximum summer temperatures from upper treeline sites in<br>Interior British Columbia, Canada. Holocene, 2003, 13, 851-861.                                          | 0.9 | 130       |
| 102 | Tree-ring reconstruction of maximum and minimum temperatures and the diurnal temperature range in British Columbia, Canada. Dendrochronologia, 2002, 20, 257-268.                                     | 1.0 | 44        |
| 103 | Dendroclimatology of high-elevation <i>Nothofagus pumilio </i> forests at their northern<br>distribution limit in the central Andes of Chile. Canadian Journal of Forest Research, 2001, 31, 925-936. | 0.8 | 44        |