Govind P Agrawal

List of Publications by Citations

Source: https://exaly.com/author-pdf/9329679/govind-p-agrawal-publications-by-citations.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

657 67 20,180 119 h-index g-index citations papers 23,663 2.8 7.22 774 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
657	2002,		1017
656	Long-Wavelength Semiconductor Lasers 1986,		772
655	. IEEE Journal of Quantum Electronics, 1989 , 25, 2297-2306	2	744
654	Nonlinear optical phenomena in silicon waveguides: modeling and applications. <i>Optics Express</i> , 2007 , 15, 16604-44	3.3	608
653	Modulation instability induced by cross-phase modulation. <i>Physical Review Letters</i> , 1987 , 59, 880-883	7.4	368
652	2010,		332
651	Nonlinear optical properties of one-dimensional semiconductors and conjugated polymers. <i>Physical Review B</i> , 1978 , 17, 776-789	3.3	314
650	Population pulsations and nondegenerate four-wave mixing in semiconductor lasers and amplifiers. Journal of the Optical Society of America B: Optical Physics, 1988, 5, 147	1.7	296
649	. IEEE Photonics Technology Letters, 1994 , 6, 995-997	2.2	231
648	Impact of two-photon absorption on self-phase modulation in silicon waveguides. <i>Optics Letters</i> , 2007 , 32, 2031-3	3	230
647	Soliton fission and supercontinuum generation in silicon waveguides. <i>Optics Letters</i> , 2007 , 32, 391-3	3	226
646	Nonlinear Propagation in Multimode and Multicore Fibers: Generalization of the Manakov Equations. <i>Journal of Lightwave Technology</i> , 2013 , 31, 398-406	4	199
645	Gain nonlinearities in semiconductor lasers: Theory and application to distributed feedback lasers. <i>IEEE Journal of Quantum Electronics</i> , 1987 , 23, 860-868	2	189
644	Ultrabroadband parametric generation and wavelength conversion in silicon waveguides. <i>Optics Express</i> , 2006 , 14, 4786-99	3.3	185
643	Gaussian beam propagation beyond the paraxial approximation. <i>Journal of the Optical Society of America</i> , 1979 , 69, 575		185
642	Line narrowing in a single-mode injection laser due to external optical feedback. <i>IEEE Journal of Quantum Electronics</i> , 1984 , 20, 468-471	2	181
641	Optical properties of one-dimensional semiconductors and conjugated polymers. <i>Physical Review B</i> , 1977 , 15, 909-925	3.3	178

(1986-2010)

640	Improved transmission model for metal-dielectric-metal plasmonic waveguides with stub structure. <i>Optics Express</i> , 2010 , 18, 6191-204	3.3	172
639	Calcium silicate based microspheres of repaglinide for gastroretentive floating drug delivery: preparation and in vitro characterization. <i>Journal of Controlled Release</i> , 2005 , 107, 300-9	11.7	161
638	Mannosylated solid lipid nanoparticles as vectors for site-specific delivery of an anti-cancer drug. Journal of Controlled Release, 2010 , 148, 359-67	11.7	158
637	Dispersion of silicon nonlinearities in the near infrared region. <i>Applied Physics Letters</i> , 2007 , 91, 021111	3.4	158
636	Do solitonlike self-similar waves exist in nonlinear optical media?. <i>Physical Review Letters</i> , 2006 , 97, 013	9,04	157
635	Raman response function for silica fibers. <i>Optics Letters</i> , 2006 , 31, 3086-8	3	145
634	Optical bistability through nonlinear dispersion and absorption. <i>Physical Review A</i> , 1979 , 19, 2074-2086	2.6	135
633	Optical pulse propagation in doped fiber amplifiers. <i>Physical Review A</i> , 1991 , 44, 7493-7501	2.6	131
632	Nonlinear fiber optics: its history and recent progress [Invited]. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2011 , 28, A1	1.7	129
631	2005,		127
631	2005, Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization. <i>Physical Review A</i> , 2007, 75,	2.6	127 125
	Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and	2.6	
630	Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization. <i>Physical Review A</i> , 2007 , 75, Modulation instability induced by cross-phase modulation in optical fibers. <i>Physical Review A</i> , 1989 ,		125
630 629	Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization. <i>Physical Review A</i> , 2007 , 75, Modulation instability induced by cross-phase modulation in optical fibers. <i>Physical Review A</i> , 1989 , 39, 3406-3413	2.6	125
630 629 628	Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization. <i>Physical Review A</i> , 2007 , 75, Modulation instability induced by cross-phase modulation in optical fibers. <i>Physical Review A</i> , 1989 , 39, 3406-3413 Optical similaritons in nonlinear waveguides. <i>Optics Letters</i> , 2007 , 32, 1659-61 Gelatin nanocarriers as potential vectors for effective management of tuberculosis. <i>International</i>	2.6	125 121 119
630 629 628	Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization. <i>Physical Review A</i> , 2007 , 75, Modulation instability induced by cross-phase modulation in optical fibers. <i>Physical Review A</i> , 1989 , 39, 3406-3413 Optical similaritons in nonlinear waveguides. <i>Optics Letters</i> , 2007 , 32, 1659-61 Gelatin nanocarriers as potential vectors for effective management of tuberculosis. <i>International Journal of Pharmaceutics</i> , 2010 , 385, 143-9	2.6 3 6.5	125 121 119 116
630 629 628 627	Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization. <i>Physical Review A</i> , 2007 , 75, Modulation instability induced by cross-phase modulation in optical fibers. <i>Physical Review A</i> , 1989 , 39, 3406-3413 Optical similaritons in nonlinear waveguides. <i>Optics Letters</i> , 2007 , 32, 1659-61 Gelatin nanocarriers as potential vectors for effective management of tuberculosis. <i>International Journal of Pharmaceutics</i> , 2010 , 385, 143-9 Laser instabilities: a modern perspective. <i>Progress in Quantum Electronics</i> , 1998 , 22, 43-122 Development and characterization of hyaluronic acid-anchored PLGA nanoparticulate carriers of	2.636.59.1	125 121 119 116

622	Adapalene loaded solid lipid nanoparticles gel: an effective approach for acne treatment. <i>Colloids and Surfaces B: Biointerfaces</i> , 2014 , 121, 222-9	6	112
621	. IEEE Journal of Quantum Electronics, 1994 , 30, 668-679	2	109
620	Fast-Fourier-transform based beam-propagation model for stripe-geometry semiconductor lasers: Inclusion of axial effects. <i>Journal of Applied Physics</i> , 1984 , 56, 3100-3109	2.5	105
619	. IEEE Journal of Quantum Electronics, 1988, 24, 2407-2414	2	104
618	Spatiotemporal solitons in inhomogeneous nonlinear media. <i>Optics Communications</i> , 2000 , 180, 377-38	322	103
617	Induced focusing of optical beams in self-defocusing nonlinear media. <i>Physical Review Letters</i> , 1990 , 64, 2487-2490	7.4	100
616	Propagation-induced polarization changes in partially coherent optical beams. <i>Journal of the Optical Society of America A: Optics and Image Science, and Vision</i> , 2000 , 17, 2019-23	1.8	99
615	Temporal and spectral effects of cross-phase modulation on copropagating ultrashort pulses in optical fibers. <i>Physical Review A</i> , 1989 , 40, 5063-5072	2.6	95
614	Raman-induced spectral shifts in optical fibers: general theory based on the moment method. <i>Optics Communications</i> , 2003 , 222, 413-420	2	94
613	An insight on hyaluronic acid in drug targeting and drug delivery. <i>Journal of Drug Targeting</i> , 2008 , 16, 91-107	5.4	92
612	Dispersion tailoring and soliton propagation in silicon waveguides. <i>Optics Letters</i> , 2006 , 31, 1295-7	3	91
611	Effect of gain nonlinearities on period doubling and chaos in directly modulated semiconductor lasers. <i>Applied Physics Letters</i> , 1986 , 49, 1013-1015	3.4	88
610	Vector theory of stimulated Raman scattering and its application to fiber-based Raman amplifiers. Journal of the Optical Society of America B: Optical Physics, 2003, 20, 1616	1.7	87
609	. IEEE Journal of Quantum Electronics, 1990 , 26, 1901-1909	2	87
608	Induced-frequency shift of copropagating ultrafast optical pulses. <i>Applied Physics Letters</i> , 1988 , 52, 19	393.1494	1 87
607	Unified description of ultrafast stimulated Raman scattering in optical fibers. <i>Journal of the Optical Society of America B: Optical Physics</i> , 1996 , 13, 2170	1.7	85
606	Broadly tunable femtosecond parametric oscillator using a photonic crystal fiber. <i>Optics Letters</i> , 2005 , 30, 1234-6	3	84
605	Spatiotemporal instabilities in dispersive nonlinear media. <i>Physical Review A</i> , 1992 , 46, 4202-4208	2.6	82

604	Spectral hole-burning and gain saturation in semiconductor lasers: Strong-signal theory. <i>Journal of Applied Physics</i> , 1988 , 63, 1232-1235	2.5	80
603	Analytic and numerical study of pulse broadening in nonlinear dispersive optical fibers. <i>Journal of the Optical Society of America B: Optical Physics</i> , 1986 , 3, 205	1.7	79
602	Mid-infrared supercontinuum generation using dispersion-engineered Ge(11.5)As(24)Se(64.5) chalcogenide channel waveguide. <i>Optics Express</i> , 2015 , 23, 6903-14	3.3	78
601	Theory of low-threshold optical switching in nonlinear phase-shifted periodic structures. <i>Journal of the Optical Society of America B: Optical Physics</i> , 1995 , 12, 671	1.7	78
600	Four-wave mixing and phase conjugation in semiconductor laser media. <i>Optics Letters</i> , 1987 , 12, 260-2	3	77
599	Kink solitons and optical shocks in dispersive nonlinear media. <i>Physical Review A</i> , 1992 , 46, 1573-1577	2.6	76
598	. IEEE Photonics Technology Letters, 1990 , 2, 875-877	2.2	73
597	Amplification and compression of weak picosecond optical pulses by using semiconductor-laser amplifiers. <i>Optics Letters</i> , 1989 , 14, 500-2	3	72
596	Reflection and transmission of electromagnetic waves at a temporal boundary. <i>Optics Letters</i> , 2014 , 39, 574-7	3	71
595	Interactions of chirped and chirp-free similaritons in optical fiber amplifiers. <i>Optics Express</i> , 2007 , 15, 2963-73	3.3	71
594	Impact of dispersion fluctuations on dual-pump fiber-optic parametric amplifiers. <i>IEEE Photonics Technology Letters</i> , 2004 , 16, 1292-1294	2.2	70
593	Optical solitons in a silicon waveguide. <i>Optics Express</i> , 2007 , 15, 7682-8	3.3	69
592	Changes in the spectrum, in the spectral degree of polarization, and in the spectral degree of coherence of a partially coherent beam propagating through a gradient-index fiber. <i>Journal of the Optical Society of America A: Optics and Image Science, and Vision</i> , 2006 , 23, 940-8	1.8	68
591	Theory of intermodal four-wave mixing with random linear mode coupling in few-mode fibers. <i>Optics Express</i> , 2014 , 22, 32039-59	3.3	65
590	Effect of intrapulse stimulated Raman scattering on soliton-effect pulse compression in optical fibers. <i>Optics Letters</i> , 1990 , 15, 224-6	3	64
589	Mode-partition noise in vertical-cavity surface-emitting lasers. <i>IEEE Photonics Technology Letters</i> , 1997 , 9, 437-439	2.2	63
588	Record performance of parametric amplifier constructed with highly nonlinear fibre. <i>Electronics Letters</i> , 2003 , 39, 838	1.1	62
587	Induced focusing and spatial wave breaking from cross-phase modulation in a self-defocusing medium. <i>Optics Letters</i> , 1992 , 17, 19-21	3	62

586	Two-Photon Double-Beam Optical Bistability. <i>Physical Review Letters</i> , 1980 , 44, 1058-1061	7.4	62
585	Effects of optical feedback on static and dynamic characteristics of vertical-cavity surface-emitting lasers. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 1997 , 3, 353-358	3.8	60
584	Mode-partition noise and intensity correlation in a two-mode semiconductor laser. <i>Physical Review A</i> , 1988 , 37, 2488-2494	2.6	60
583	Effect of frequency chirping on the performance of optical communication systems. <i>Optics Letters</i> , 1986 , 11, 318	3	60
582	Delocalization and superalternation effects in the nonlinear susceptibilities of one-dimensional systems. <i>Chemical Physics Letters</i> , 1976 , 44, 366-370	2.5	60
581	A novel calcium silicate based microspheres of repaglinide: in vivo investigations. <i>Journal of Controlled Release</i> , 2006 , 113, 111-6	11.7	59
580	Silicon waveguides for creating quantum-correlated photon pairs. <i>Optics Letters</i> , 2006 , 31, 3140-2	3	59
579	Free-space wave propagation beyond the paraxial approximation. <i>Physical Review A</i> , 1983 , 27, 1693-169	95 .6	59
578	Channeling of intense electromagnetic beams. <i>Journal of Applied Physics</i> , 1981 , 52, 109-125	2.5	59
577	Lateral analysis of quasi-index-guided injection lasers: Transition from gain to index guiding. Journal of Lightwave Technology, 1984 , 2, 537-543	4	58
576	. IEEE Journal of Quantum Electronics, 1991 , 27, 1843-1849	2	57
575	Stimulated Raman scattering cascade spanning the wavelength range of 523 to 1750 nm using a graded-index multimode optical fiber. <i>Applied Physics Letters</i> , 2013 , 102, 201107	3.4	56
574	Far-field diffraction of pulsed optical beams in dispersive media. <i>Optics Communications</i> , 1999 , 167, 15-	22	56
573	Light Propagation in Gain Media: Optical Amplifiers 2011 ,		56
572	Nonlinear Silicon Photonics: Analytical Tools. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2010 , 16, 200-215	3.8	55
571	Vector theory of four-wave mixing: polarization effects in fiber-optic parametric amplifiers. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2004 , 21, 1216	1.7	54
570	. IEEE Photonics Technology Letters, 1989 , 1, 212-214	2.2	54
569	Fibre gratings. <i>Physics World</i> , 1993 , 6, 41-48	0.5	53

(1999-2015)

568	What is the Temporal Analog of Reflection and Refraction of Optical Beams?. <i>Physical Review Letters</i> , 2015 , 115, 183901	7.4	51	
567	Modulation bandwidth of high-power single-mode semiconductor lasers: Effect of intraband gain saturation. <i>Applied Physics Letters</i> , 1990 , 57, 1-3	3.4	51	
566	Theoretical analysis of hot electron dynamics in nanorods. <i>Scientific Reports</i> , 2015 , 5, 12140	4.9	50	
565	Optical switching in lambda/4-shifted nonlinear periodic structures. <i>Optics Letters</i> , 1994 , 19, 1789-91	3	50	
564	Vectorial nonlinear propagation in silicon nanowire waveguides: polarization effects. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2010 , 27, 956	1.7	49	
563	Chaotic dynamics of semiconductor lasers with phase-conjugate feedback. <i>Physical Review A</i> , 1994 , 49, 2096-2105	2.6	49	
562	Effect of gain dispersion and stimulated Raman scattering on soliton amplification in fiber amplifiers. <i>Optics Letters</i> , 1991 , 16, 226-8	3	49	
561	. IEEE Journal of Quantum Electronics, 1988 , 24, 134-142	2	49	
560	Analytical study of optical bistability in silicon ring resonators. <i>Optics Letters</i> , 2010 , 35, 55-7	3	48	
559	Dispersive waves emitted by solitons perturbed by third-order dispersion inside optical fibers. <i>Physical Review A</i> , 2009 , 79,	2.6	48	
558	Spectral shift and distortion due to self-phase modulation of picosecond pulses in 1.5 th optical amplifiers. <i>Applied Physics Letters</i> , 1989 , 55, 13-15	3.4	48	
557	Self-amplitude-modulation of optical pulses in nonlinear dispersive fibers. <i>Physical Review A</i> , 1987 , 36, 3862-3867	2.6	48	
556	. Journal of Lightwave Technology, 1988 , 6, 620-625	4	48	
555	Effects of higher-order dispersion on resonant dispersive waves emitted by solitons. <i>Optics Letters</i> , 2009 , 34, 2072-4	3	47	
554	Semiconductor laser dynamics for feedback from a finite-penetration-depth phase-conjugate mirror. <i>IEEE Journal of Quantum Electronics</i> , 1997 , 33, 838-844	2	47	
553	Semiconductor laser dynamics beyond the rate-equation approximation. <i>Optics Communications</i> , 1995 , 119, 246-255	2	47	
552	Optical wave breaking and pulse compression due to cross-phase modulation in optical fibers. <i>Optics Letters</i> , 1989 , 14, 137-9	3	47	
551	Effects of third-order dispersion on dispersion-managed solitons. <i>Journal of the Optical Society of America B: Optical Physics</i> , 1999 , 16, 1332	1.7	46	

550	. IEEE Photonics Technology Letters, 1992 , 4, 562-564	2.2	46
549	Transverse modulation instability of copropagating optical beams in nonlinear Kerr media. <i>Journal of the Optical Society of America B: Optical Physics</i> , 1990 , 7, 1072	1.7	46
548	Distributed feedback lasers with multiple phase-shift regions. <i>Applied Physics Letters</i> , 1988 , 53, 178-179	3.4	46
547	Reduction of Nonlinear Penalties Due to Linear Coupling in Multicore Optical Fibers. <i>IEEE Photonics Technology Letters</i> , 2012 , 24, 1574-1576	2.2	45
546	Optical switching using nonlinear polarization rotation inside silicon waveguides. <i>Optics Letters</i> , 2009 , 34, 476-8	3	45
545	Anisotropic nonlinear response of silicon in the near-infrared region. <i>Applied Physics Letters</i> , 2007 , 91, 071113	3.4	45
544	Noise amplification in dispersive nonlinear media. <i>Physical Review A</i> , 1995 , 51, 4086-4092	2.6	45
543	Modulational instabilities in dispersion-flattened fibers. <i>Physical Review E</i> , 1995 , 52, 1072-1080	2.4	45
542	Beam-propagation analysis of stripe-geometry semiconductor lasers: Threshold behavior. <i>Applied Physics Letters</i> , 1983 , 43, 11-13	3.4	45
541	Effects of spatial hole burning on gain switching in vertical-cavity surface-emitting lasers. <i>IEEE Journal of Quantum Electronics</i> , 1997 , 33, 462-468	2	44
540	Dynamics of parametric processes with a trilinear hamiltonian. <i>Journal of Physics A: Mathematical Nuclear and General</i> , 1974 , 7, 607-616		44
539	Purely phase-sampled fiber Bragg gratings for broad-band dispersion and dispersion slope compensation. <i>IEEE Photonics Technology Letters</i> , 2003 , 15, 1091-1093	2.2	43
538	Effect of phase-conjugate feedback on the noise characteristics of semiconductor lasers. <i>Physical Review A</i> , 1992 , 46, 5890-5898	2.6	43
537	Lateral-mode analysis of gain-guided and index-guided semiconductor-laser arrays. <i>Journal of Applied Physics</i> , 1985 , 58, 2922-2931	2.5	43
536	Effects of transverse-mode competition on the injection dynamics of vertical-cavity surface-emitting lasers. <i>Quantum and Semiclassical Optics: Journal of the European Optical Society Part B</i> , 1997 , 9, 737-747		42
535	Spectrum-induced changes in diffraction of pulsed optical beams. <i>Optics Communications</i> , 1998 , 157, 52-56	2	42
534	Effects of polarization-mode dispersion on fiber-based parametric amplification and wavelength conversion. <i>Optics Letters</i> , 2004 , 29, 1114-6	3	42
533	Self-focusing of chirped optical pulses in nonlinear dispersive media. <i>Physical Review A</i> , 1994 , 49, 4085-	40,962	42

(2001-1989)

532	Cross-phase modulation and induced focusing due to optical nonlinearities in optical fibers and bulk materials. <i>Journal of the Optical Society of America B: Optical Physics</i> , 1989 , 6, 824	1.7	42
531	Effect of phase-conjugate feedback on semiconductor laser dynamics. <i>Optics Letters</i> , 1991 , 16, 1325-7	3	42
530	Assessment of VCSEL thermal rollover mechanisms from measurements and empirical modeling. <i>Optics Express</i> , 2011 , 19, 15490-505	3.3	41
529	Self-Phase Modulation in Semiconductor Optical Amplifiers: Impact of Amplified Spontaneous Emission. <i>IEEE Journal of Quantum Electronics</i> , 2010 , 46, 1396-1403	2	41
528	Instability due to cross-phase modulation in the normal-dispersion regime. <i>Physical Review E</i> , 1993 , 48, 2178-2186	2.4	41
527	Graded-index solitons in multimode fibers. <i>Optics Letters</i> , 2018 , 43, 3345-3348	3	40
526	Suppression of stimulated Brillouin scattering in optical fibers using fiber Bragg gratings. <i>Optics Express</i> , 2003 , 11, 3467-72	3.3	40
525	Effective mode area and its optimization in silicon-nanocrystal waveguides. <i>Optics Letters</i> , 2012 , 37, 229	95-7	39
524	Spectral and temporal changes of optical pulses propagating through time-varying linear media. <i>Optics Letters</i> , 2011 , 36, 505-7	3	39
523	Transfer-matrix analysis of optical bistability in DFB semiconductor laser amplifiers with nonuniform gratings. <i>IEEE Journal of Quantum Electronics</i> , 1997 , 33, 2029-2037	2	39
522	Photon-pair generation by four-wave mixing in optical fibers. <i>Optics Letters</i> , 2006 , 31, 1286-8	3	39
521	Representation of vector electromagnetic beams. <i>Physical Review A</i> , 1980 , 22, 1159-1164	2.6	39
520	Exact dispersion relation for nonlinear plasmonic waveguides. <i>Physical Review B</i> , 2011 , 84,	3.3	38
519	Ultrafast optical switching based on nonlinear polarization rotation in silicon waveguides. <i>Optics Express</i> , 2010 , 18, 11514-23	3.3	38
518	Nonlinear switching of optical pulses in fiber Bragg gratings. <i>IEEE Journal of Quantum Electronics</i> , 2003 , 39, 508-515	2	38
517	Spatiotemporal instabilities in nonlinear bulk media with Bragg gratings. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2001 , 18, 45	1.7	38
516	Tuberculosis: from molecular pathogenesis to effective drug carrier design. <i>Drug Discovery Today</i> , 2012 , 17, 760-73	8.8	37
515	Effects of precompensation and postcompensation on timing jitter in dispersion-managed systems. Optics Letters, 2001, 26, 1131-3	3	37

514	Specialty Fibers for Terahertz Generation and Transmission: A Review. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2016 , 22, 365-379	3.8	36
513	40-gb/s optical switching and wavelength multicasting in a two-pump parametric device. <i>IEEE Photonics Technology Letters</i> , 2005 , 17, 2376-2378	2.2	36
512	Vector soliton fission. <i>Physical Review Letters</i> , 2004 , 93, 183901	7.4	36
511	FDTD modeling of anisotropic nonlinear optical phenomena in silicon waveguides. <i>Optics Express</i> , 2010 , 18, 21427-48	3.3	35
510	Timing jitter of ultrashort solitons in high-speed communication systems I General formulation and application to dispersion-decreasing fibers. <i>Journal of the Optical Society of America B: Optical Physics</i> , 1997 , 14, 314	1.7	35
509	Spatio-temporal characteristics of filamentation in broad-area semiconductor lasers. <i>IEEE Journal of Quantum Electronics</i> , 1997 , 33, 1174-1179	2	35
508	End correction in the quasi-fast Hankel transform for optical propagation problems. <i>Optics Letters</i> , 1981 , 6, 171-3	3	35
507	Soliton stability and trapping in multimode fibers. <i>Optics Letters</i> , 2015 , 40, 225-8	3	34
506	Nonlinear propagation in silicon-based plasmonic waveguides from the standpoint of applications. <i>Optics Express</i> , 2011 , 19, 206-17	3.3	34
505	Evaluation of porous carrier-based floating orlistat microspheres for gastric delivery. <i>AAPS PharmSciTech</i> , 2006 , 7, 90	3.9	34
504	Spectrum of partially coherent light: transition from near to far zone. <i>Optics Communications</i> , 1990 , 78, 1-6	2	34
503	Energy spectrum of a nonstationary ensemble of pulses. <i>Optics Letters</i> , 2004 , 29, 394-6	3	33
502	Highly nondegenerate four-wave mixing in semiconductor lasers due to spectral hole burning. <i>Applied Physics Letters</i> , 1987 , 51, 302-304	3.4	33
501	Noise propagation from pump to secondary lasers. <i>Optics Letters</i> , 1987 , 12, 806-8	3	33
500	Effect of injection-current fluctuations on the spectral linewidth of semiconductor lasers. <i>Physical Review A</i> , 1988 , 37, 2495-2501	2.6	33
499	Bistability and hysteresis in phase-conjugated reflectivity. <i>IEEE Journal of Quantum Electronics</i> , 1981 , 17, 374-380	2	33
498	Wolf effect in homogeneous and inhomogeneous media. <i>Journal of the Optical Society of America A: Optics and Image Science, and Vision</i> , 1990 , 7, 2184	1.8	32
497	Dispersion engineered Gells le la	3.3	31

496	Optical Square-Wave Clock Generation Based on an All-Optical Flip-Flop. <i>IEEE Photonics Technology Letters</i> , 2010 , 22, 489-491	2.2	31
495	Robust optical control of an optical-amplifier-based flip-flop. <i>Optics Express</i> , 2000 , 6, 75-80	3.3	31
494	Feedback-induced chaos and intensity-noise enhancement in vertical-cavity surface-emitting lasers. Journal of the Optical Society of America B: Optical Physics, 1998, 15, 562	1.7	31
493	Electromagnetic-field distribution in loaded unstable resonators. <i>Journal of the Optical Society of America A: Optics and Image Science, and Vision</i> , 1985 , 2, 731	1.8	31
492	Timing jitter of ultrashort solitons in high-speed communication systemsII Control of jitter by periodic optical phase conjugation. <i>Journal of the Optical Society of America B: Optical Physics</i> , 1997 , 14, 323	1.7	30
491	Raman-Induced timing jitter in dispersion-managed optical communication systems. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2002 , 8, 632-639	3.8	30
490	16 Gbit/s, 70 km pulse transmission by simultaneous dispersion and loss compensation with 1.5 h optical amplifiers. <i>Electronics Letters</i> , 1989 , 25, 603	1.1	30
489	Optical bistability in coupled-cavity semiconductor lasers. <i>Journal of Applied Physics</i> , 1984 , 56, 664-669	2.5	30
488	Power spectrum of directly modulated single-mode semiconductor lasers: Chirp-induced fine structure. <i>IEEE Journal of Quantum Electronics</i> , 1985 , 21, 680-686	2	30
487	GordonHaus timing jitter in dispersion-managed systems with lumped amplification: analytical approach. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2002 , 19, 640	1.7	29
486	All-optical hysteresis control by means of cross-phase modulation in semiconductor optical amplifiers. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2001 , 18, 1003	1.7	29
485	Asymmetric partially coherent solitons in saturable nonlinear media. <i>Physical Review E</i> , 1999 , 60, 2377-8	8 0 .4	29
484	Maxwell-Bloch formulation for semiconductors: Effects of coherent Coulomb exchange. <i>Physical Review A</i> , 1995 , 51, 4132-4139	2.6	29
483	. IEEE Journal of Quantum Electronics, 1995 , 31, 2058-2067	2	29
482	. IEEE Photonics Technology Letters, 1993 , 5, 640-642	2.2	29
481	Analytic evaluation of interference effects on laser output in a Fabry Perot resonator. <i>Journal of the Optical Society of America</i> , 1981 , 71, 515		29
480	Dual targeted polymeric nanoparticles based on tumor endothelium and tumor cells for enhanced antitumor drug delivery. <i>Molecular Pharmaceutics</i> , 2014 , 11, 697-715	5.6	28
479	Control of optical-feedback-induced laser intensity noise in optical data recording. <i>Optical Engineering</i> , 1993 , 32, 739	1.1	28

478	Saturation effects in degenerate four-wave mixing on homogeneously broadened coupled transitions. <i>Physical Review A</i> , 1983 , 28, 2286-2295	2.6	28
477	Saturation splitting in the spectrum of resonant degenerate four-wave mixing. <i>Optics Letters</i> , 1982 , 7, 540-2	3	28
476	Analytical study of optical bistability in silicon-waveguide resonators. <i>Optics Express</i> , 2009 , 17, 22124-37	73.3	27
475	Role of dispersion profile in controlling emission of dispersive waves by solitons in supercontinuum generation. <i>Optics Communications</i> , 2010 , 283, 3081-3088	2	27
474	Polarization changes of partially coherent pulses propagating in optical fibers. <i>Journal of the Optical Society of America A: Optics and Image Science, and Vision</i> , 2007 , 24, 3063-8	1.8	27
473	Dispersion of cascaded fiber gratings in WDM lightwave systems. <i>Journal of Lightwave Technology</i> , 1998 , 16, 1523-1529	4	27
472	Pulse compression and spatial phase modulation in normally dispersive nonlinear Kerr media. <i>Optics Letters</i> , 1995 , 20, 306-8	3	27
471	Effects of interference on gain saturation in laser resonators. <i>Journal of the Optical Society of America</i> , 1979 , 69, 1717		27
470	Continuous-wave Raman amplification in silicon waveguides: beyond the undepleted pump approximation. <i>Optics Letters</i> , 2009 , 34, 536-8	3	26
469	Asymmetric incoherent vector solitons. <i>Physical Review E</i> , 2004 , 69, 036604	2.4	26
468	Surface-modified mesoporous ceramics as delivery vehicle for haemoglobin. <i>Drug Delivery</i> , 2004 , 11, 193-9	7	26
467	Pump-wave effects on the propagation of noisy signals in nonlinear dispersive media. <i>Journal of the Optical Society of America B: Optical Physics</i> , 1995 , 12, 1126	1.7	26
466	Amplifier-induced crosstalk in multichannel coherent lightwave systems. <i>Electronics Letters</i> , 1987 , 23, 1175	1.1	26
465	Effect of fiber-far-end reflections on the bit error rate in optical communication with single-frequency semiconductor lasers. <i>Journal of Lightwave Technology</i> , 1986 , 4, 58-63	4	26
464	Cavity QED analysis of an exciton-plasmon hybrid molecule via the generalized nonlocal optical response method. <i>Physical Review B</i> , 2017 , 95,	3.3	25
463	Perturbation of higher-order solitons by fourth-order dispersion in optical fibers. <i>Optics Communications</i> , 2009 , 282, 3798-3803	2	25
462	Effects of polarization-mode dispersion on cross-phase modulation in dispersion-managed wavelength-division-multiplexed systems. <i>Journal of Lightwave Technology</i> , 2004 , 22, 977-987	4	25
461	Intensity and phase noise in microcavity surface-emitting semiconductor lasers. <i>Applied Physics Letters</i> , 1991 , 59, 399-401	3.4	25

460	Effect of fiber-far-end reflections on intensity and phase noise in InGaAsP semiconductor lasers. <i>Applied Physics Letters</i> , 1984 , 45, 597-599	3.4	25
459	Bistable reflectivity of phase-conjugated signal through intracavity degenerate four-wave mixing. <i>Applied Physics Letters</i> , 1981 , 38, 492-494	3.4	25
458	Electrically pumped hybrid plasmonic waveguide. <i>Optics Express</i> , 2014 , 22, 2681-94	3.3	24
457	New approach to pulse propagation in nonlinear dispersive optical media. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2012 , 29, 2958	1.7	24
456	Effects of polarization-mode dispersion in dual-pump fiber-optic parametric amplifiers. <i>IEEE Photonics Technology Letters</i> , 2004 , 16, 431-433	2.2	24
455	Statistics of polarization-dependent gain in fiber-based Raman amplifiers. Optics Letters, 2003, 28, 227-	93	24
454	Tunable, high-repetition-rate, harmonically mode-locked ytterbium fiber laser. <i>Optics Letters</i> , 2004 , 29, 1360-2	3	24
453	Coherence functions in the far-field diffraction plane. <i>Societa Italiana Di Fisica Nuovo Cimento B-General Physics, Relativity Astronomy and Mathematical Physics and Methods</i> , 1973 , 15, 295-307		24
452	Temporal waveguides for optical pulses. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2016 , 33, 1112	1.7	24
451	Ultrabroadband mid-infrared supercontinuum generation through dispersion engineering of chalcogenide microstructured fibers. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2015 , 32, 2343	1.7	23
450	Design of an efficient mid-IR light source using chalcogenide holey fibers: a numerical study. <i>Journal of Optics (United Kingdom)</i> , 2013 , 15, 035205	1.7	23
449	Dynamics of Raman soliton during supercontinuum generation near the zero-dispersion wavelength of optical fibers. <i>Optics Express</i> , 2011 , 19, 10443-55	3.3	23
448	Maximization of net optical gain in silicon-waveguide Raman amplifiers. <i>Optics Express</i> , 2009 , 17, 5807-1	4 .3	23
447	Interaction of Bragg solitons in fiber gratings. <i>Journal of the Optical Society of America B: Optical Physics</i> , 1999 , 16, 18	1.7	23
446	Generalized rate equations and modulation characteristics of external-cavity semiconductor lasers. Journal of Applied Physics, 1984 , 56, 3110-3115	2.5	23
445	Galactose decorated PLGA nanoparticles for hepatic delivery of acyclovir. <i>Drug Development and Industrial Pharmacy</i> , 2013 , 39, 1866-73	3.6	22
444	Effect of soliton interaction on timing jitter in communication systems. <i>Journal of Lightwave Technology</i> , 1998 , 16, 515-519	4	22
443	Bistability in coupled cavity semiconductor lasers. <i>Applied Physics Letters</i> , 1984 , 44, 30-32	3.4	22

442	. IEEE Journal of Selected Topics in Quantum Electronics, 2012 , 18, 899-908	3.8	21
441	Low-loss dielectric-loaded graphene surface plasmon polariton waveguide based biochemical sensor. <i>Journal of Applied Physics</i> , 2015 , 117, 213105	2.5	21
440	Unified perfectly matched layer for finite-difference time-domain modeling of dispersive optical materials. <i>Optics Express</i> , 2009 , 17, 21179-90	3.3	21
439	Impact of pump-phase modulation on dual-pump fiber-optic parametric amplifiers and wavelength converters. <i>IEEE Photonics Technology Letters</i> , 2005 , 17, 2053-2055	2.2	21
438	Polarization mode dispersion-induced fluctuations during Raman amplifications in optical fibers. <i>Optics Letters</i> , 2002 , 27, 2194-6	3	21
437	Spatiotemporal shaping of half-cycle terahertz pulses by diffraction through conductive apertures of finite thickness. <i>Journal of the Optical Society of America B: Optical Physics</i> , 1998 , 15, 1399	1.7	21
436	Spatio-temporal characteristics of filamentation in broad-area semiconductor lasers: experimental results. <i>IEEE Photonics Technology Letters</i> , 1998 , 10, 54-56	2.2	21
435	. IEEE Journal of Quantum Electronics, 1995 , 31, 1326-1336	2	21
434	. IEEE Journal of Quantum Electronics, 1993 , 29, 844-855	2	21
433	Generalized Bloch-Maxwell formulation for semiconductor lasers. <i>Optics Communications</i> , 1993 , 100, 147-152	2	21
432	Inhomogeneous Broadening and the Mean-field Approximation for Optical Bistability in a Fabry-Perot Interferometer. <i>Optica Acta</i> , 1980 , 27, 651-660		21
431	Doppler-free continuous-wave phase-conjugate spectrum of SF6 by resonant degenerate four-wave mixing at 10.6 microm. <i>Optics Letters</i> , 1981 , 6, 383-5	3	21
430	Invite paper: Self-imaging in multimode graded-index fibers and its impact on the nonlinear phenomena. <i>Optical Fiber Technology</i> , 2019 , 50, 309-316	2.4	20
429	Guided plasmonic modes of anisotropic slot waveguides. <i>Nanotechnology</i> , 2012 , 23, 444006	3.4	20
428	Nonlinear spatio-temporal dynamics due to transverse-mode competition in gain-switched microcavity semiconductor lasers. <i>Optics Communications</i> , 1997 , 138, 95-98	2	20
427	Add-drop multiplexers and interleavers with broad-band chromatic dispersion compensation based on purely phase-sampled fiber gratings. <i>IEEE Photonics Technology Letters</i> , 2004 , 16, 635-637	2.2	20
426	Effect of beam ellipticity on self-mode locking in lasers. <i>Optics Letters</i> , 1993 , 18, 2026	3	20
425	. IEEE Journal of Quantum Electronics, 1990 , 26, 501-505	2	20

424	Power-dependent enhancement in repeater spacing for dispersion-limited optical communication systems. <i>Electronics Letters</i> , 1986 , 22, 759	1.1	20
423	Propagation of a partially coherent beam through Selfoc fibers. Optics Communications, 1974, 12, 333-3	337	20
422	Effective third-order susceptibility of silicon-nanocrystal-doped silica. <i>Optics Express</i> , 2012 , 20, 26275-8	43.3	19
421	All-optical flip-flop operation of VCSOA. <i>Electronics Letters</i> , 2009 , 45, 127	1.1	19
420	Maxwell B loch dynamics and modulation instabilities in fiber lasers and amplifiers. <i>Journal of the Optical Society of America B: Optical Physics</i> , 1997 , 14, 2618	1.7	19
419	Mode locking in semiconductor lasers by phase-conjugate optical feedback. <i>Optics Letters</i> , 1995 , 20, 12	9 <u>\$</u> -7	19
418	Solitons in fiber amplifiers beyond the parabolic-gain and rate-equation approximations. <i>Optics Communications</i> , 1996 , 124, 500-504	2	19
417	Effect of two-photon absorption on the amplification of ultrashort optical pulses. <i>Physical Review E</i> , 1993 , 48, 2316-2318	2.4	19
416	Power penalty due to decision-time jitter in optical communication systems. <i>Electronics Letters</i> , 1986 , 22, 450	1.1	19
415	Stomach specific polymeric low density microballoons as a vector for extended delivery of rabeprazole and amoxicillin for treatment of peptic ulcer. <i>Colloids and Surfaces B: Biointerfaces</i> , 2016 , 141, 268-277	6	18
414	Effect of chirped gratings on reflective optical bistability in DFB semiconductor laser amplifiers. <i>IEEE Journal of Quantum Electronics</i> , 1998 , 34, 2364-2370	2	18
413	Nonlinear interaction of two or more similaritons in loss- and dispersion-managed fibers. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2008 , 25, 983	1.7	18
412	Bandwidth equalization of purely phase-sampled fiber Bragg gratings for broadband dispersion and dispersion slope compensation. <i>Optics Express</i> , 2004 , 12, 5595-602	3.3	18
411	Importance of prechirping in constant-dispersion fiber links with a large amplifier spacing. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2000 , 17, 514	1.7	18
410	Temporal modulation instabilities of counterpropagating waves in a finite dispersive Kerr medium I Theoretical model and analysis. <i>Journal of the Optical Society of America B: Optical Physics</i> , 1998 , 15, 607	7 ^{1.7}	18
409	High-repetition-rate soliton-train generation using fiber Bragg gratings. <i>Optics Express</i> , 1998 , 3, 411-7	3.3	18
408	Optimization of optical beam steering in nonlinear Kerr media by spatial phase modulation. <i>Journal of the Optical Society of America B: Optical Physics</i> , 1994 , 11, 2224	1.7	18
407	Pulse-shape effects on frequency chirping in single-frequency semiconductor lasers under current modulation. <i>Journal of Lightwave Technology</i> , 1986 , 4, 497-503	4	18

406	Soliton dynamics in photonic-crystal fibers with frequency-dependent Kerr nonlinearity. <i>Physical Review A</i> , 2018 , 98,	2.6	17
405	Quasi-static analysis of controllable optical cross-sections of a layered nanoparticle with a sandwiched gain layer. <i>Journal of Optics (United Kingdom)</i> , 2014 , 16, 075003	1.7	17
404	Fourier processing with partially coherent fields. Optics Letters, 2017, 42, 4600-4602	3	17
403	Localization of light in evanescently coupled disordered waveguide lattices: Dependence on the input beam profile. <i>Optics Communications</i> , 2011 , 284, 201-206	2	17
402	Switching and self-trapping dynamics of bose-Einstein solitons. <i>Journal of Modern Optics</i> , 2000 , 47, 1155	5-11169	17
401	Ultrahigh-bit-rate soliton communication systems using dispersion-decreasing fibers and parametric amplifiers. <i>Optics Letters</i> , 1996 , 21, 116-8	3	17
400	Elliptical polarization emission from GaAlAs laser diodes in an external cavity configuration. <i>IEEE Journal of Quantum Electronics</i> , 1996 , 32, 213-221	2	17
399	Effect of mode coupling on optical bistability in a bidirectional ring cavity. <i>Applied Physics Letters</i> , 1981 , 38, 505-507	3.4	17
398	Dielectric function of spherical dome shells with quantum size effects. <i>Optics Express</i> , 2014 , 22, 11966-8	3 4 .3	16
397	Dynamic mode theory of optical resonators undergoing refractive index changes. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2011 , 28, 2207	1.7	16
396	Nonlinear pulse propagation: a time-transformation approach. <i>Optics Letters</i> , 2012 , 37, 1271-3	3	16
395	Self-referenced and single-ended method to measure Brillouin gain in monomode optical fibers. <i>Optics Letters</i> , 2009 , 34, 1018-20	3	16
394	Spatiotemporal shaping of terahertz pulses. <i>Optics Letters</i> , 1997 , 22, 627-9	3	16
393	. Journal of Lightwave Technology, 2008 , 26, 1653-1660	4	16
392	Femtosecond pulse propagation in silicon waveguides: Variational approach and its advantages. <i>Optics Communications</i> , 2008 , 281, 5889-5893	2	16
391	A Novel Design for Polarization-Independent Single-Pump Fiber-Optic Parametric Amplifiers. <i>IEEE Photonics Technology Letters</i> , 2006 , 18, 2335-2337	2.2	16
390	1.31-to-1.55 th wavelength conversion by optically pumping a distributed feedback amplifier. <i>IEEE Photonics Technology Letters</i> , 2000 , 12, 858-860	2.2	16
389	. IEEE Photonics Technology Letters, 1992 , 4, 1216-1219	2.2	16

388	Computer simulation and noise analysis of the system performance of 1.55-µm single-frequency semiconductor lasers. <i>Journal of Lightwave Technology</i> , 1987 , 5, 653-659	4	16
387	Coupled-cavity semiconductor lasers under current modulation: Small-signal analysis. <i>IEEE Journal of Quantum Electronics</i> , 1985 , 21, 255-263	2	16
386	Theory of two-photon double-beam optical bistability. <i>Physical Review A</i> , 1981 , 24, 3173-3181	2.6	16
385	Mode discrimination and coupling losses in rectangular-waveguide resonators with conventional and phase-conjugate mirrors. <i>Journal of the Optical Society of America</i> , 1982 , 72, 853		16
384	Complete characterization of the spasing (L-L) curve of a three-level quantum coherence enhanced spaser for design optimization. <i>Applied Physics Letters</i> , 2018 , 112, 201108	3.4	16
383	Dual-pump frequency comb generation in normally dispersive optical fibers. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2015 , 32, 1705	1.7	15
382	Implications of a zero-nonlinearity wavelength in photonic crystal fibers doped with silver nanoparticles. <i>Physical Review A</i> , 2016 , 94,	2.6	15
381	Impact of Device Parameters on Thermal Performance of High-Speed Oxide-Confined 850-nm VCSELs. <i>IEEE Journal of Quantum Electronics</i> , 2012 , 48, 17-26	2	15
380	Semi-analytic technique for analyzing mode-locked lasers. <i>Optics Express</i> , 2005 , 13, 2075-81	3.3	15
379	Theory of incoherent optical solitons: beyond the mean-field approximation. <i>Physical Review E</i> , 2004 , 70, 015603	2.4	15
378	Controlling filamentation in broad-area semiconductor lasers and amplifiers. <i>Applied Physics Letters</i> , 1996 , 69, 593-595	3.4	15
377	Steering of optical beams in nonlinear Kerr media by spatial phase modulation. <i>Optics Letters</i> , 1993 , 18, 1795-7	3	15
376	. IEEE Photonics Technology Letters, 1989 , 1, 419-421	2.2	15
375	. IEEE Journal of Quantum Electronics, 1991 , 27, 332-343	2	15
374	Linewidth of distributed feedback semiconductor lasers with partially reflecting facets. <i>Applied Physics Letters</i> , 1986 , 48, 457-459	3.4	15
373	Heuristic approach to spontaneous emission factor of gain-guided lasers. <i>Journal of the Optical Society of America B: Optical Physics</i> , 1984 , 1, 406	1.7	15
372	Optical gyroscopes. <i>Optics and Laser Technology</i> , 1981 , 13, 239-244	4.2	15
371	Mode instabilities in a homogeneously broadened ring laser. <i>Optics Communications</i> , 1982 , 42, 269-274	2	15

370	Chain-Pairing Effects in One-Dimensional Conjugated Polymers and Semiconductors. <i>Physical Review Letters</i> , 1977 , 38, 711-715	7.4	15
369	Double-liposome-based dual-drug delivery system as vectors for effective management of peptic ulcer. <i>Journal of Liposome Research</i> , 2012 , 22, 205-14	6.1	14
368	Rate-equation approach for frequency-modulation mode locking using the moment method. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2005 , 22, 2570	1.7	14
367	Vector theory of cross-phase modulation: role of nonlinear polarization rotation. <i>IEEE Journal of Quantum Electronics</i> , 2004 , 40, 958-964	2	14
366	Spatiotemporal shaping of half-cycle terahertz pulses by diffraction through conductive apertures of finite thickness. <i>Journal of the Optical Society of America B: Optical Physics</i> , 1998 , 15, 1953	1.7	14
365	Simultaneous amplification and compression of picosecond optical pulses during Raman amplification in optical fibers. <i>Journal of the Optical Society of America B: Optical Physics</i> , 1993 , 10, 2383	1.7	14
364	Intracavity resonant degenerate four-wave mixing: bistability in phase conjugation. <i>Journal of the Optical Society of America</i> , 1983 , 73, 654		14
363	Reduced chirping in coupled-cavity-semiconductor lasers. <i>Applied Physics Letters</i> , 1984 , 45, 119-121	3.4	14
362	Polarization characteristics of distributed feedback semiconductor lasers. <i>Applied Physics Letters</i> , 1985 , 46, 213-215	3.4	14
361	Steady-state formulation of optical bistability for a Doppler-broadened medium in a Fabry-Perot. <i>Optics Communications</i> , 1980 , 34, 293-299	2	14
360	Phase conjugation and degenerate four-wave mixing in three-level systems. <i>IEEE Journal of Quantum Electronics</i> , 1981 , 17, 2335-2340	2	14
359	Theoretical analysis of hot electron injection from metallic nanotubes into a semiconductor interface. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 18227-36	3.6	13
358	Controlling the degree of polarization of partially coherent electromagnetic beams with lenses. <i>Optics Letters</i> , 2018 , 43, 2344-2347	3	13
357	Time-transformation approach to pulse propagation in nonlinear dispersive media: Inclusion of delayed Raman nonlinearity. <i>Physical Review A</i> , 2013 , 87,	2.6	13
356	. Journal of Lightwave Technology, 2009 , 27, 3831-3836	4	13
355	Effects of coherence and polarization on the coupling of stochastic electromagnetic beams into optical fibers. <i>Journal of the Optical Society of America A: Optics and Image Science, and Vision</i> , 2009 , 26, 2452-8	1.8	13
354	Raman amplification of optical pulses in silicon waveguides: effects of finite gain bandwidth, pulse width, and chirp. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2009 , 26, 17	1.7	13
353	Pump-noise transfer in dual-pump fiber-optic parametric amplifiers: walk-off effects. <i>Optics Letters</i> , 2005 , 30, 1048-50	3	13

352	Linear optical bullets. <i>Optics Communications</i> , 2006 , 261, 1-4	2	13
351	Timing jitter in dispersion-managed soliton systems with distributed, lumped, and hybrid amplification. <i>Journal of Lightwave Technology</i> , 2002 , 20, 790-797	4	13
350	Polarization self-modulated lasers with circular eigenstates. <i>Applied Physics Letters</i> , 1999 , 74, 3266-326	83.4	13
349	Effect of frequency chirp on soliton spectral sidebands in fiber lasers. <i>Optics Letters</i> , 1995 , 20, 1286-8	3	13
348	Soliton communication beyond the average-soliton regime. <i>Journal of the Optical Society of America B: Optical Physics</i> , 1995 , 12, 2420	1.7	13
347	Timing jitter analysis for optical communication systems using ultrashort solitons and dispersion-decreasing fibers. <i>Optics Communications</i> , 1996 , 131, 274-278	2	13
346	Nonlinear fiber optics. Soviet Journal of Quantum Electronics, 1988, 18, 1-15		13
345	Nonlinear saturated absorption in resonant media: Level-degeneracy-induced polarization effects. <i>Physical Review A</i> , 1984 , 29, 994-996	2.6	13
344	Analysis of ridge-waveguide distributed feedback lasers. <i>IEEE Journal of Quantum Electronics</i> , 1985 , 21, 534-538	2	13
343	Transient optical reflectivity from bounded nonlocal media. <i>Physical Review B</i> , 1982 , 25, 2715-2729	3.3	13
342	Effect of index antiguiding on the far-field distribution of stripe-geometry lasers. <i>Optics Communications</i> , 1983 , 47, 283-287	2	13
341	Fate of a Soliton in a High Order Spatial Mode of a Multimode Fiber. <i>Physical Review Letters</i> , 2019 , 122, 023901	7.4	13
340	Phase-Switched All-Optical Flip-Flops Using Two-Input Bistable Resonators. <i>IEEE Photonics Technology Letters</i> , 2012 , 24, 479-481	2.2	12
339	. Journal of Lightwave Technology, 2009 , 27, 3241-3248	4	12
338	Porous carrier based floating granular delivery system of repaglinide. <i>Drug Development and Industrial Pharmacy</i> , 2007 , 33, 381-91	3.6	12
337	Design rules for dispersion-managed soliton systems. <i>Optics Communications</i> , 2002 , 206, 193-200	2	12
336	Nonperturbative analysis of Zeeman-coherence effects on resonant phase conjugation. <i>Optics Letters</i> , 1983 , 8, 359-61	3	12
335	Chirp minimization and optimum biasing for current-modulated coupled-cavity semiconductor lasers. <i>Optics Letters</i> , 1985 , 10, 10-2	3	12

334	SELF-PHASE MODULATION 1995 , 89-132		12
333	Effect of nonlinear gain on single-frequency behaviour of semiconductor lasers. <i>Electronics Letters</i> , 1986 , 22, 696	1.1	12
332	Spectral Splitting of Optical Pulses Inside a Dispersive Medium at a Temporal Boundary. <i>IEEE Journal of Quantum Electronics</i> , 2016 , 52, 1-8	2	11
331	Effect of Raman scattering on soliton interactions in optical fibers. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2017 , 34, 1247	1.7	11
330	Transverse localization of light and its dependence on the phase front curvature of the input beam in a disordered optical waveguide lattice. <i>Journal of Optics (United Kingdom)</i> , 2012 , 14, 075701	1.7	11
329	. IEEE Journal of Selected Topics in Quantum Electronics, 2010 , 16, 226-233	3.8	11
328	Remote optical control of an optical flip-flop. <i>Optics Letters</i> , 2007 , 32, 3260-2	3	11
327	Impact of dispersion fluctuations on 40-Gb/s dispersion-managed lightwave systems. <i>Journal of Lightwave Technology</i> , 2003 , 21, 990-996	4	11
326	Reduced timing jitter in dispersion-managed light-wave systems through parametric amplification. Journal of the Optical Society of America B: Optical Physics, 2003, 20, 284	1.7	11
325	Optimization of the average-dispersion range for long-haul dispersion-managed soliton systems. Journal of Lightwave Technology, 2000 , 18, 1504-1512	4	11
324	High-bit-rate soliton transmission using distributed amplification and dispersion management. <i>IEEE Photonics Technology Letters</i> , 1999 , 11, 818-820	2.2	11
323	Power spectra and spatial pattern dynamics of a ring laser. <i>Journal of Statistical Physics</i> , 1989 , 54, 1223	-12 4 1	11
322	Effect of auger recombination on the threshold characteristics of gain-guided InGaAsP lasers. <i>Electronics Letters</i> , 1983 , 19, 974	1.1	11
321	Simultaneous forward and backward integration for standing waves in a resonator. <i>Applied Optics</i> , 1979 , 18, 2730-1	1.7	11
320	Second-harmonic generation with arbitrary pump-beam profiles. <i>Physical Review A</i> , 1981 , 23, 1863-186	82.6	11
319	Intermodal soliton interaction in nearly degenerate modes of a multimode fiber. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2016 , 33, 2217	1.7	11
318	Coupling of stochastic electromagnetic beams into optical fibers. <i>Optics Letters</i> , 2009 , 34, 2829-31	3	10
317	. IEEE Journal of Quantum Electronics, 2010 , 46, 1732-1738	2	10

(2016-2002)

316	Effect of distributed Raman amplification on timing jitter in dispersion-managed lightwave systems. <i>IEEE Photonics Technology Letters</i> , 2002 , 14, 39-40	2.2	10
315	Low-power all-optical switching in active semiconductor chirped periodic structures. <i>Optics Express</i> , 1998 , 3, 440-6	3.3	10
314	Lateral spatial effects of feedback in gain-guided and broad-area semiconductor lasers. <i>IEEE Journal of Quantum Electronics</i> , 1996 , 32, 1630-1635	2	10
313	Mutual injection locking of a fibre laser and a DFB semiconductor laser. <i>Electronics Letters</i> , 1995 , 31, 41-42	1.1	10
312	Agrawal replies. <i>Physical Review Letters</i> , 1990 , 64, 814	7.4	10
311	. IEEE Photonics Technology Letters, 1991 , 3, 204-206	2.2	10
310	Evaluation of crosstalk penalty in multichannel ASK heterodyne optical communication systems. <i>Electronics Letters</i> , 1987 , 23, 906	1.1	10
309	Fiber Lasers 2001 , 201-262		10
308	Design of all-optical, hot-electron current-direction-switching device based on geometrical asymmetry. <i>Scientific Reports</i> , 2016 , 6, 21470	4.9	10
307	Yb:fiber laser-based, spectrally coherent and efficient generation of femtosecond 1.3-th pulses from a fiber with two zero-dispersion wavelengths. <i>Optics Letters</i> , 2015 , 40, 3631-4	3	9
306	Spectral changes induced by a phase modulator acting as a time lens. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2015 , 32, 1550	1.7	9
305	Perturbed dissipative solitons: A variational approach. <i>Physical Review A</i> , 2017 , 96,	2.6	9
304	Propagation of few-cycle pulses in nonlinear Kerr media: harmonic generation. <i>Optics Letters</i> , 2013 , 38, 724-6	3	9
303	Analytical study of pulse amplification in silicon Raman amplifiers. <i>Optics Express</i> , 2010 , 18, 18324-38	3.3	9
302	Raman-Mediated Nonlinear Interactions in Silicon Waveguides: Copropagating and Counterpropagating Pulses. <i>IEEE Photonics Technology Letters</i> , 2009 , 21, 1372-1374	2.2	9
301	Nonlinear Interaction Between Signal and Noise in Optical Fibers. <i>Journal of Lightwave Technology</i> , 2008 , 26, 1847-1853	4	9
300	Ordering of the exponential of a quadratic in boson operators. II. Multimode case. <i>Journal of Mathematical Physics</i> , 1977 , 18, 408-412	1.2	9
299	Dynamics of soliton cascades in fiber amplifiers. <i>Optics Letters</i> , 2016 , 41, 5198-5201	3	9

298	Spatio-temporal enhancement of Raman-induced frequency shifts in graded-index multimode fibers. <i>Optics Letters</i> , 2019 , 44, 2637	3	9
297	Optical Communication: Its History and Recent Progress 2016 , 177-199		9
296	Averaged nonlinear equations for multimode fibers valid in all regimes of random linear coupling. <i>Optical Fiber Technology</i> , 2019 , 48, 123-127	2.4	9
295	Vector solitons and dispersive waves in birefringent optical fibers. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2018 , 35, 2302	1.7	9
294	Cross-phase-modulation-induced temporal reflection and waveguiding of optical pulses. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2018 , 35, 436	1.7	9
293	Characterizing the Optical Response of Symmetric Hemispherical Nano-dimers. <i>Plasmonics</i> , 2015 , 10, 1453-1466	2.4	8
292	Optical Solitons 2013 , 129-191		8
291	Nonlinear Performance of SDM Systems Designed with Multimode or Multicore Fibers 2013 ,		8
290	Optical pulse propagation in dynamic Fabry P erot resonators. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2011 , 28, 1685	1.7	8
289	Pulse amplification in semiconductor optical amplifiers with ultrafast gain-recovery times 2010 ,		8
288	Effect of free carriers on pump-to-signal noise transfer in silicon Raman amplifiers. <i>Optics Letters</i> , 2010 , 35, 2343-5	3	8
287	Parabolic pulse generation in a dispersion-decreasing solid-core photonic bandgap Bragg fiber. <i>Optics Communications</i> , 2010 , 283, 2525-2528	2	8
286	Nonlinear dynamics in the generalized Lorenz-Haken model. <i>Optics Communications</i> , 1997 , 133, 565-577	'2	8
285	Absolute instabilities in lasers with host-induced nonlinearities and dispersion. <i>IEEE Journal of Quantum Electronics</i> , 1998 , 34, 1854-1860	2	8
284	Spectral and spatial dynamics in InGaN blue-violet lasers. <i>Applied Physics Letters</i> , 2006 , 89, 241128	3.4	8
283	Raman-induced polarization-dependent gain in parametric amplifiers pumped with orthogonally polarized lasers. <i>IEEE Photonics Technology Letters</i> , 2006 , 18, 397-399	2.2	8
282	Pulse broadening induced by dispersion fluctuations in optical fibers. <i>Optics Communications</i> , 2002 , 206, 313-317	2	8
281	Optical Amplifiers226-278		8

280	Coherent Lightwave Systems478-517		8
279	Laser Instabilities and Chaos in Inhomogeneously Broadened Dense Media. <i>Journal of Modern Optics</i> , 1995 , 42, 101-107	1.1	8
278	Spatiotemporal coupling in dispersive nonlinear planar waveguides. <i>Journal of the Optical Society of America B: Optical Physics</i> , 1995 , 12, 2382	1.7	8
277	Dispersion-tailored active-fiber solitons. <i>Optics Letters</i> , 1996 , 21, 1978-80	3	8
276	Multidimensional coupling owing to optical nonlinearities I General formulation. <i>Journal of the Optical Society of America B: Optical Physics</i> , 1996 , 13, 553	1.7	8
275	Influence of refractive index nonlinearities on modulation and noise properties of semiconductor lasers. <i>Electronics Letters</i> , 1992 , 28, 1773	1.1	8
274	Spectrum-enhanced spreading of partially coherent beams. <i>Optics Communications</i> , 1990 , 78, 203-207	2	8
273	Effect of nonlinear gain on intensity noise in single-mode semiconductor lasers. <i>Electronics Letters</i> , 1991 , 27, 232	1.1	8
272	Theoretical analysis of mode partition noise in single-frequency semiconductor lasers. <i>Electronics Letters</i> , 1985 , 21, 1220	1.1	8
271	Continuous Fourier-transform spline solution of unstable resonator-field distribution. <i>Optics Letters</i> , 1979 , 4, 303-5	3	8
270	Lasers with three-level absorbers. <i>Physical Review A</i> , 1981 , 24, 1399-1403	2.6	8
269	Parametric interaction of an arbitrary incident signal. <i>Physical Review A</i> , 1975 , 12, 1513-1518	2.6	8
268	Fiber Amplifiers 2001 , 151-200		8
267	Plastic fiber design for THz generation through wavelength translation. <i>Optics Letters</i> , 2015 , 40, 2107-	103	7
266	. IEEE Photonics Technology Letters, 2016 , 28, 1703-1706	2.2	7
265	. IEEE Photonics Technology Letters, 2013 , 25, 78-80	2.2	7
264	Determination of modes of elliptical waveguides with ellipse transformation perturbation theory. <i>Optica</i> , 2017 , 4, 1510	8.6	7
263	Theory of negative refraction in periodic stratified metamaterials. <i>Optics Express</i> , 2010 , 18, 27916-29	3.3	7

262	Dependence of dispersive and birefringence properties of silicon nanowires on waveguide dimensions. <i>Optics Letters</i> , 2010 , 35, 190-2	3	7
261	Controlled release calcium silicate based floating granular delivery system of ranitidine hydrochloride. <i>Current Drug Delivery</i> , 2006 , 3, 367-72	3.2	7
260	FM mode-locked fiber lasers operating in the autosoliton regime. <i>IEEE Journal of Quantum Electronics</i> , 2005 , 41, 753-761	2	7
259	Impact of polarization-mode dispersion on measurement of zero-dispersion wavelength through four-wave mixing. <i>IEEE Photonics Technology Letters</i> , 2003 , 15, 1719-1721	2.2	7
258	Temporal modulation instabilities of counterpropagating waves in a finite dispersive Kerr medium II Application to Fabry Perot cavities. <i>Journal of the Optical Society of America B: Optical Physics</i> , 1998 , 15, 617	1.7	7
257	. Journal of Lightwave Technology, 1989 , 7, 1351-1359	4	7
256	Phase conjugation through two-photon resonant nondegenerate four-wave mixing. <i>Optics Communications</i> , 1981 , 39, 272-276	2	7
255	Resonance-Enhanced Transient Reflectivity via Exciton Polaritons. <i>Physical Review Letters</i> , 1981 , 46, 17	4 -1 47	7
254	Phase conjugation in biharmonically pumped two-photon resonant systems. <i>Optics Communications</i> , 1982 , 42, 366-370	2	7
253	WAVE PROPAGATION IN OPTICAL FIBERS 1995 , 28-59		7
252	Degree of polarization in the focal region of a lens. <i>Journal of the Optical Society of America A: Optics and Image Science, and Vision</i> , 2018 , 35, 1518-1522	1.8	6
251	Nonlinear interaction of vector solitons inside birefringent optical fibers. <i>Physical Review A</i> , 2018 , 98,	2.6	6
250	Temporal reflection as a spectral-broadening mechanism in dual-pumped dispersion-decreasing fibers and its connection to dispersive waves. <i>Physical Review A</i> , 2017 , 95,	2.6	6
249	. IEEE Photonics Journal, 2010 , 2, 423-435	1.8	6
248	Pulse Propagation in Fibers 2006 , 25-50		6
247	Self-Phase Modulation 2006 , 79-119		6
246	Fiber-optic parametric amplifiers in the presence of polarization-mode dispersion and polarization-dependent loss. <i>Journal of Lightwave Technology</i> , 2006 , 24, 3088-3096	4	6

244	. IEEE Journal of Selected Topics in Quantum Electronics, 2004 , 10, 1107-1114	3.8	6
243	Role of distributed amplification in designing high-capacity soliton systems. <i>Optics Express</i> , 2001 , 9, 66-	73.3	6
242	Longitudinal-mode stabilization in semiconductor lasers with wavelength-selective feedback. Journal of Applied Physics, 1986 , 59, 3958-3961	2.5	6
241	Evaluation of Fourier integrals using \$B\$-splines. <i>Mathematics of Computation</i> , 1982 , 39, 535-535	1.6	6
240	Use of a bidirectional ring cavity for optical bistable devices. <i>IEEE Journal of Quantum Electronics</i> , 1982 , 18, 214-218	2	6
239	Supercontinuum generation in seven-core fibers. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2019 , 36, 2927	1.7	6
238	STIMULATED RAMAN SCATTERING 1995 , 316-369		6
237	Temporal reflection and refraction of optical pulses inside a dispersive medium: an analytic approach. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2021 , 38, 997	1.7	6
236	Femtosecond pulse trains through dual pumping of optical fibers: role of third-order dispersion. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 1733	1.7	5
235	Estimation of the blackbody-radiation shift due to the Stark effect for the microwave Cd+113 ion clock. <i>Physical Review A</i> , 2017 , 96,	2.6	5
234	Maximization of Gain in Slow-Light Silicon Raman Amplifiers. <i>International Journal of Optics</i> , 2011 , 2011, 1-7	0.9	5
233	IV: Soliton Communication Systems. <i>Progress in Optics</i> , 1997 , 185-256	3.4	5
232	Optical Solitons 2006 , 120-176		5
231	Temporal Solitons 2003 , 63-103		5
230	Nonlinear theory of polarization-mode dispersion for fiber solitons. <i>Physical Review Letters</i> , 2003 , 90, 013902	7.4	5
229	Optical Signal Generation 2005 , 26-62		5
228	Fiber Gratings 2001 , 1-61		5
227	Control of soliton-soliton and soliton-dispersive wave interactions in high bit-rate communication systems. <i>Electronics Letters</i> , 1995 , 31, 1461-1463	1.1	5

226	. IEEE Photonics Technology Letters, 1995 , 7, 149-151	2.2	5
225	. IEEE Photonics Technology Letters, 1995 , 7, 932-934	2.2	5
224	. IEEE Photonics Technology Letters, 1992 , 4, 218-220	2.2	5
223	Importance of rapid damping of relaxation oscillations for high-performance optical communication systems. <i>Electronics Letters</i> , 1986 , 22, 1087	1.1	5
222	Optical bistability in a phase-conjugate Fabry-Perot cavity. <i>Optics Communications</i> , 1981 , 37, 366-368	2	5
221	Waveguide resonators with a phase-conjugate mirror. <i>Optics Letters</i> , 1982 , 7, 159-61	3	5
220	Angular spectrum approach to electromagnetic wave propagation in inhomogeneous media. <i>Optics Communications</i> , 1975 , 14, 88-91	2	5
219	Four-wave mixing 2019 , 401-462		4
218	Highly nonlinear fibers 2019 , 463-502		4
217	Polarization Effects 2013 , 193-244		4
217	Spectral broadening in ultrafast semiconductor optical amplifiers induced by gain dynamics and self-phase modulation. <i>Optics Letters</i> , 2010 , 35, 294-6	3	4
	Spectral broadening in ultrafast semiconductor optical amplifiers induced by gain dynamics and	3	
216	Spectral broadening in ultrafast semiconductor optical amplifiers induced by gain dynamics and self-phase modulation. <i>Optics Letters</i> , 2010 , 35, 294-6 Degenerate-cross-phase modulation of femtosecond laser pulses in a birefringent single-mode		
216	Spectral broadening in ultrafast semiconductor optical amplifiers induced by gain dynamics and self-phase modulation. <i>Optics Letters</i> , 2010 , 35, 294-6 Degenerate-cross-phase modulation of femtosecond laser pulses in a birefringent single-mode optical fiber. <i>IEEE Photonics Technology Letters</i> , 1997 , 9, 1107-1109	2.2	4
216 215 214	Spectral broadening in ultrafast semiconductor optical amplifiers induced by gain dynamics and self-phase modulation. <i>Optics Letters</i> , 2010 , 35, 294-6 Degenerate-cross-phase modulation of femtosecond laser pulses in a birefringent single-mode optical fiber. <i>IEEE Photonics Technology Letters</i> , 1997 , 9, 1107-1109 Phase-space quality factor for ultrashort pulsed beams. <i>Optics Letters</i> , 2008 , 33, 767-9	2.2	4 4
216 215 214 213	Spectral broadening in ultrafast semiconductor optical amplifiers induced by gain dynamics and self-phase modulation. <i>Optics Letters</i> , 2010 , 35, 294-6 Degenerate-cross-phase modulation of femtosecond laser pulses in a birefringent single-mode optical fiber. <i>IEEE Photonics Technology Letters</i> , 1997 , 9, 1107-1109 Phase-space quality factor for ultrashort pulsed beams. <i>Optics Letters</i> , 2008 , 33, 767-9 Group-Velocity Dispersion 2006 , 51-78 Optical versus electrical dispersion compensation: role of timing jitter. <i>Journal of Lightwave</i>	2.2	4 4
216 215 214 213	Spectral broadening in ultrafast semiconductor optical amplifiers induced by gain dynamics and self-phase modulation. <i>Optics Letters</i> , 2010 , 35, 294-6 Degenerate-cross-phase modulation of femtosecond laser pulses in a birefringent single-mode optical fiber. <i>IEEE Photonics Technology Letters</i> , 1997 , 9, 1107-1109 Phase-space quality factor for ultrashort pulsed beams. <i>Optics Letters</i> , 2008 , 33, 767-9 Group-Velocity Dispersion 2006 , 51-78 Optical versus electrical dispersion compensation: role of timing jitter. <i>Journal of Lightwave Technology</i> , 2006 , 24, 387-395	2.2	4 4 4

(2012-1990)

208	Fundamental limitation on large-signal modulation of semiconductor lasers and its implications for lightwave transmission. <i>Electronics Letters</i> , 1990 , 26, 916	1.1	4
207	Saturation splitting of phase-conjugate line through resonant degenerate four-wave mixing in SF6. <i>Applied Physics Letters</i> , 1983 , 42, 225-227	3.4	4
206	Experimental verification of transition from gain- to index-guiding in a rib-waveguide AlGaAs laser. <i>Electronics Letters</i> , 1986 , 22, 1290	1.1	4
205	Imaging characteristics of square law media. <i>Nouvelle Revue DiOptique</i> , 1976 , 7, 299-303		4
204	Phase determination by conjugate wave-front generation. <i>Journal of the Optical Society of America</i> , 1978 , 68, 1135		4
203	Fraunhofer diffraction and the state of polarization of partially coherent electromagnetic beams. <i>Optics Letters</i> , 2019 , 44, 3330-3333	3	4
202	Soliton supermode transitions and total red shift suppression in multi-core fibers. <i>Optics Letters</i> , 2019 , 44, 4159-4162	3	4
201	WAVE PROPAGATION IN OPTICAL FIBERS 1989 , 26-50		4
200	CROSS-PHASE MODULATION 1995 , 238-315		4
199	Rate Equations and Operating Characteristics 1993 , 231-318		4
199 198	Rate Equations and Operating Characteristics 1993 , 231-318 Distributed-Feedback Semiconductor Lasers 1993 , 319-384		4
198	Distributed-Feedback Semiconductor Lasers 1993 , 319-384	4.9	4
198	Distributed-Feedback Semiconductor Lasers 1993, 319-384 Multimode fibers 2019, 621-683 Dynamics and detection of the Newton-Wigner time delays at interfaces using a swivelling method.	4.9	3
198 197 196	Distributed-Feedback Semiconductor Lasers 1993, 319-384 Multimode fibers 2019, 621-683 Dynamics and detection of the Newton-Wigner time delays at interfaces using a swivelling method. Scientific Reports, 2017, 7, 9083	4.9	3
198 197 196	Distributed-Feedback Semiconductor Lasers 1993, 319-384 Multimode fibers 2019, 621-683 Dynamics and detection of the Newton-Wigner time delays at interfaces using a swivelling method. Scientific Reports, 2017, 7, 9083 Effect of random linear mode coupling on intermodal four-wave mixing in few-mode fibers 2014, Birefringence effects in space-division multiplexed fiber transmission systems: Generalization of	4.9	4333
198 197 196 195	Distributed-Feedback Semiconductor Lasers 1993, 319-384 Multimode fibers 2019, 621-683 Dynamics and detection of the Newton-Wigner time delays at interfaces using a swivelling method. Scientific Reports, 2017, 7, 9083 Effect of random linear mode coupling on intermodal four-wave mixing in few-mode fibers 2014, Birefringence effects in space-division multiplexed fiber transmission systems: Generalization of Manakov equation 2012,		4333

190	Stimulated Raman Scattering 2006 , 274-328		3
189	Four-Wave Mixing 2006 , 368-423		3
188	Introduction to the special issue on nonlinear optics. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2002 , 8, 405-407	3.8	3
187	Fiber-Optic Communications 2001 , 319-366		3
186	Optical Transmitters77-132		3
185	Optical Receivers133-182		3
184	Optical Fibers23-76		3
183	Semiconductor laser coupled to a finite-response time phase-conjugate mirror 1996,		3
182	Carrier-induced group-velocity dispersion and pulse compression in semiconductor laser amplifiers. <i>Electronics Letters</i> , 1991 , 27, 620	1.1	3
181	Correlation between linewidth rebroadening and low-frequency RIN enhancement in semiconductor lasers. <i>Electronics Letters</i> , 1991 , 27, 1150	1.1	3
180	A novel three-step mesa etching process for semiconductor lasers and the use of Monte Carlo simulations for active-width control. <i>Journal of Applied Physics</i> , 1989 , 65, 4120-4123	2.5	3
179	Fraunhofer diffraction in the beam approximation from two longitudinally separated slits. <i>Journal of the Optical Society of America</i> , 1982 , 72, 164		3
178	Single-pulse interference caused by temporal reflection at moving refractive-index boundaries. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2017 , 34, 2274	1.7	3
177	Distributed feedback lasing based on a negative-index metamaterial waveguide. <i>Optics Letters</i> , 2019 , 44, 4586-4589	3	3
176	Fiber Optic Raman Amplifiers 2006 , 131-153		3
175	OPTICAL SOLITONS 1989 , 104-146		3
174	GROUP-VELOCITY DISPERSION 1995 , 60-88		3
173	Generation of Sub-100-fs Pulses at 532 nm from Modulation Instability Induced by Cross-Phase Modulation in Optical Fibers. <i>Springer Series in Chemical Physics</i> , 1988 , 53-55	0.3	3

172	Distributed-Feedback Semiconductor Lasers 1986 , 287-332		3
171	Time-domain FabryPerot resonators formed inside a dispersive medium. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2021 , 38, 2376	1.7	3
170	Optical Fibers24-78		3
169	Pulse propagation in fibers 2019 , 27-55		2
168	Self-phase modulation 2019 , 85-125		2
167	Nonlinear Limits of SDM Transmission 2014,		2
166	Plasmonic Modes of Metamaterial-Based Slot Waveguides. <i>Advances in OptoElectronics</i> , 2012 , 2012, 1-5	0.5	2
165	Characteristics of photonic crystal fibers designed with an annular core using a single material. <i>Applied Optics</i> , 2013 , 52, 3088-93	1.7	2
164	Polarization-dependent spectral broadening of femtosecond pulses in silicon waveguides. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2011 , 28, 2383	1.7	2
163	. Journal of the European Optical Society-Rapid Publications, 2011 , 6,	2.5	2
162	Intrapulse depolarization in optical fibers: a classical analog of spin decoherence. <i>Optics Letters</i> , 2005 , 30, 821-3	3	2
161	Spectral responsitivity and efficiency of metal-based femtosecond autocorrelation technique. <i>Optics Communications</i> , 2004 , 242, 279-283	2	2
160	Theory of Raman Amplifiers 2005 , 33-102		2
159	Fiber Couplers 2001 , 62-111		2
158	Beam filamentation and its control in high-power semiconductor lasers 1998 , 3283, 302		2
157	. Journal of Lightwave Technology, 1989 , 7, 2064-2071	4	2
156	Propagation of two optical beams in a two-photon resonant medium. <i>Optics Communications</i> , 1981 , 38, 216-220	2	2
155	Evaluation of Fourier Integrals Using B-Splines. <i>Mathematics of Computation</i> , 1982 , 39, 535	1.6	2

154	Evanescent waves and the van Cittert Zernike theorem in cylindrical geometry 1977 , 9, 155-161		2
153	Optical nonlinearities in polydiacetylene polymers: Chain pairing effects. <i>Societa Italiana Di Fisica Nuovo Cimento B-General Physics, Relativity Astronomy and Mathematical Physics and Methods</i> , 1977 , 39, 488-493		2
152	A Fourier processor for partially coherent fields. OSA Continuum, 2020, 3, 2843	1.4	2
151	OPTICAL PULSE COMPRESSION 1995 , 201-237		2
150	Soliton Lightwave Systems 2001 , 367-438		2
149	Switching and self-trapping dynamics of bose-Einstein solitons		2
148	SELF-PHASE MODULATION 1989 , 75-103		2
147	Critical Behavior in Optical Phase-Conjugation. Springer Series in Optical Sciences, 1981, 317-326	0.5	2
146	Rate Equations and Operating Characteristics 1986 , 220-286		2
145	Coupled-mode theory of the polarization dynamics inside a microring resonator with a uniaxial core. <i>Physical Review A</i> , 2021 , 103,	2.6	2
144	Impact of the boundary's sharpness on temporal reflection in dispersive media. <i>Optics Letters</i> , 2021 , 46, 4053-4056	3	2
143	Intermodal Raman Scattering of Ultrashort Pulses in Multimode Fibers 2018,		1
142	Polarization effects 2019 , 189-244		1
141	Cross-phase modulation 2019 , 245-295		1
140	Novel nonlinear phenomena 2019 , 503-556		1
139	Parametric stimulated two-photon emission through a biphotonic cascade. <i>Physical Review A</i> , 2014 , 90,	2.6	1
138	Parametric gain control of a pulse in birefringent photonic crystal fibers. <i>Physical Review A</i> , 2012 , 86,	2.6	1
137	Phase detection in optical communication systems through phase conjugation. <i>Quantum and Semiclassical Optics: Journal of the European Optical Society Part B</i> , 1996 , 8, 383-385		1

136	Increasing the transmission distance of soliton communication systems by selective frequency shifts. <i>Electronics Letters</i> , 1996 , 32, 1995	1.1	1
135	Spatial feedback effects in narrow-stripe index-guided semiconductor lasers. <i>IEEE Journal of Quantum Electronics</i> , 1997 , 33, 469-473	2	1
134	Fiber-Optic Communications 2008 , 301-348		1
133	Fiber Amplifiers 2008 , 131-178		1
132	Fiber Couplers 2008 , 54-99		1
131	Pulse Compression 2008 , 245-300		1
130	Calcium-silicate-based floating granular delivery system of ranitidine hydrochloride for effective management of peptic ulcer. <i>Medicinal Chemistry Research</i> , 2008 , 17, 305-317	2.2	1
129	A novel design for polarization-independent single-pump fiber-optic parametric amplifiers 2006,		1
128	Noise-Induced Spectral Shifts in Pseudo-Linear Fiber-Optic Communication Systems 2007,		1
127	Anisotropic nonlinear response of silicon in the near-infrared region 2007,		1
126	Asymmetric Russian-doll model for semiconductor lasers. <i>IEEE Photonics Technology Letters</i> , 2005 , 17, 747-749	2.2	1
125	Polarization Effects 2006 , 177-225		1
124	Novel Nonlinear Phenomena 2006 , 453-513		1
123	Signal Propagation in Fibers 2005 , 63-106		1
122	WDM Systems 2005 , 346-403		1
121	Lightwave Systems183-225		1
120	Multichannel Systems330-403		1
119	Soliton Systems404-477		1

118	Dispersion Management279-329		1
117	Noise properties of index-guided vertical-cavity surface-emitting lasers 1999 , 3625, 404		1
116	OPTICAL SOLITONS 1992 , 41-83		1
115	Semiconductor Lasers for Optical Fibre Communications (Invited Paper). <i>IETE Journal of Research</i> , 1986 , 32, 178-186	0.9	1
114	III Single-Longitudinal-Mode Semiconductor Lasers. <i>Progress in Optics</i> , 1988 , 26, 163-225	3.4	1
113	Atomic coherence effects in a two-mode laser with coupled transitions. <i>Physical Review A</i> , 1984 , 30, 884	-2889	1
112	Correction to "Power spectrum of directly modulated single-mode semiconductor lasers: Chirp-induced fine structure. <i>IEEE Journal of Quantum Electronics</i> , 1985 , 21, 1845-1845	2	1
111	Gas-flow-induced controlled unidirectional operation of a CO(2) ring laser. <i>Optics Letters</i> , 1985 , 10, 7-9	3	1
110	Higher-order angular coherence functions. <i>Societa Italiana Di Fisica Nuovo Cimento B-General Physics, Relativity Astronomy and Mathematical Physics and Methods</i> , 1973 , 18, 265-276		1
109	Effect of fiber-far-end reflections on the bit error rate in optical fiber communication systems 1985 ,		1
108	Effect of an input beam shape and curvature on the nonlinear effects in graded-index fibers. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 858	1.7	1
107	Celebrating the tenth anniversary of Advances in Optics and Photonics: editorial. <i>Advances in Optics and Photonics</i> , 2019 , 11, ED1	16.7	1
106	Ultrashort Pulse Propagation in Nonlinear Dispersive Fibers 2016 , 101-133		1
105	Laser Structures and Their Performance 1986 , 172-219		1
104	Fiber Interferometers 2001 , 112-150		1
103	Optical Signal Processing 2008 , 349-396		1
102	Quantum Applications 2008 , 447-492		1
101	Spatiotemporal Solitons 2003 , 212-248		1

100	GROUP-VELOCITY DISPERSION 1989 , 51-74		1
99	Optical Amplifiers 1993 , 487-529		1
98	OPTICAL SOLITONS 1995 , 133-200		1
97	FIBER AMPLIFIERS 1995 , 471-530		1
96	Modern Optical Communication Systems 1995 , 593-616		1
95	Temporal Analog of Reflection and Refraction at a Temporal Boundary 2015,		1
94	Loss Management295-344		1
93	Highly nonlinear fibers 2021 , 419-479		1
92	Coupled-Cavity Semiconductor Lasers 1993 , 385-425		1
91	Active Two-Beam Optical Bistability 1981 , 221-236		1
90	Absorptive and Dispersive Bistability for a Doppler-Broadened Medium in a Fabry-Perot: Steady-State Description 1981 , 237-264		1
89	Ultrashort Pulse Propagation in Nonlinear Dispersive Fibers 1989 , 91-116		1
88	Design of an X-cut thin-film lithium niobate waveguide as a passive polarization rotator. <i>Optics Express</i> , 2021 , 29, 44174	3.3	1
87	All-Optical Phase Control of a Square-Wave Photonic Clock. <i>IEEE Photonics Technology Letters</i> , 2011 , 23, 405-407	2.2	O
86	Observation of spectral and temporal polarization oscillations of optical pulses in a silicon nanowaveguide. <i>Applied Physics Letters</i> , 2011 , 99, 201104	3.4	О
85	Cross-Phase Modulation 2006 , 226-273		O
84	Optical Amplifier Noise 2005 , 185-224		О
83	Transverse mode dynamics of VCSELs undergoing current modulation 2000 , 3944, 284		O

82	Mode-partition noise in fibre lasers. <i>Electronics Letters</i> , 2000 , 36, 1188	1.1	O
81	Long-wavelength semiconductor lasers. <i>IEEE Journal of Quantum Electronics</i> , 1987 , 23, 641-641	2	O
80	Level-degeneracy effects in resonant nonlinear phenomena: Three-level atomic model 1984 , 22, 293-3	801	0
79	Incoherent solitons 2003 , 447-471		O
78	Vector modulation instability in birefringent graded-index multimode fibers. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2021 , 38, 201	1.7	0
77	Control of Nonlinear Effects407-458		O
76	Dispersion Management345-406		О
75	Propagation of Gaussian Schell-model beams in modulated graded-index media. <i>Optics Express</i> , 2021 , 29, 21240-21251	3.3	O
74	Power optimization for phase quantization with SOAs using the gain extinction ratio. <i>Optics Express</i> , 2021 , 29, 1545-1557	3.3	О
73	Role of frequency dependence of the nonlinearity on a soliton's evolution in photonic crystal fibers. <i>Optics Letters</i> , 2021 , 46, 3921-3924	3	О
72	Role of the modal composition of pump in the multi-peak Brillouin gain spectrum in a few-mode fiber. <i>Optics Communications</i> , 2021 , 494, 127052	2	О
71	A time-to-frequency converter for measuring the shape of short optical pulses. <i>Review of Scientific Instruments</i> , 2019 , 90, 083106	1.7	
70	Supercontinuum generation 2019 , 557-620		
69	Group-velocity dispersion 2019 , 57-84		
68	Optical solitons 2019 , 127-187		
67	Stimulated Raman scattering 2019 , 297-354		
66	Advanced Lightwave Systems 2011 , 459-510		
65	Optical Transmitters 2011 , 79-127		

Optical Bloch equations88-112 64 Semiconductor optical amplifiers143-172 63 Raman amplifiers173-207 62 Optical parametric amplifiers 208-236 61 Guided wave optics: physics, technology, and applications: introduction to the feature issue. 60 0.2 Applied Optics, 2009, 48, GWO1 Dispersion-tailored active-fiber solitons: errata. Optics Letters, 1997, 22, 841 59 3 58 Ultrashort Pulse Propagation in Nonlinear Dispersive Fibers 2006, 91-116 Fiber Optic Parametric Amplifiers for Lightwave Systems 2006, 101-117 57 Optical Networks 2005, 404-441 56 Nonlinearity Management 2005, 284-345 55 Appendix B Software Package 2005, 444-445 54 Signal Recovery and Noise 2005, 151-184 53 Dispersion Management **2005**, 225-283 52 Appendix A System of Units 2005, 442-443 Appendix C Acronyms 2005, 446-448 50 49 Nonlinear Impairments **2005**, 107-150 Spatial dynamics of VCSEL arrays 2001, 4283, 287 48 Appendix E: Software Package529-530 47

46	Appendix A: System of Units518-519	
45	Appendix B: Acronyms520-523	
44	Appendix C: General Formula for Pulse Broadening524-526	
43	Appendix D: Ultimate System Capacity527-528	
42	Photoelectron statistics of solitons corrupted by amplified spontaneous emission. <i>Physical Review A</i> , 1995 , 51, 1662-1668	2.6
41	Effect of beam ellipticity on self-mode locking in lasers: erratum. <i>Optics Letters</i> , 1994 , 19, 150	3
40	Phase-conjugate optical feedback in semiconductor lasers 1995 , 2399, 713	
39	Distributed Feedback InGaAsP Lasers (Invited Paper). IETE Journal of Research, 1986, 32, 187-195	0.9
38	Semiconductor lasers and their application in optical fiber communication. <i>Physics Teacher</i> , 1985 , 23, 478-484	0.4
37	Atmospheric propagation of high-power laser pulses by self-channelling. <i>Optics and Laser Technology</i> , 1981 , 13, 141-144	4.2
36	Use of bidirectional ring cavity for optically bistable devices. <i>IEEE Journal of Quantum Electronics</i> , 1981 , 17, 2488-2488	2
35	Nonlinear laser spectroscopy. <i>Applied Physics B: Lasers and Optics</i> , 1982 , 29, 160-169	1.9
34	Theory II. Applied Physics B: Lasers and Optics, 1982, 28, 255-261	1.9
33	A message from the outgoing Editor-in-Chief: editorial. <i>Advances in Optics and Photonics</i> , 2019 , 11, ED	2416.7
32	Optical Receivers 1988 , 55-100	
31	CROSS-PHASE MODULATION 1989 , 172-217	
30	Cooperative Modulation Instability in Dispersive Nonlinear Media 1990 , 17-21	
29	Laser Structures and Their Performance 1993 , 180-230	

(2021-1995)

28	PARAMETRIC PROCESSES 1995, 404-470
27	Ultrashort Pulse Propagation in Nonlinear Planar Optical Waveguides 1995 , 391-398
26	Multichannel Systems233-294
25	Lightwave Systems182-222
24	Optical Signal Processing511-577
23	Optical Fibers 2014 , 1-25
22	Ordering of an Exponentiated Multimode Quadratic Operator 1978 , 909-921
21	Nonperturbative Analysis of Optical Double Resonance with Application to Phase Conjugation 1984 , 31-36
20	Zeeman Coherence Effects in Absorptive Polarization Bistability 1984 , 25-30
19	Coupled-Cavity Semiconductor Lasers 1986 , 333-371
18	Space-Division Multiplexing 2021 , 413-450
17	Lightwave Systems 2021 , 151-183
16	Optical Fibers 2021 , 21-65
15	Multichannel Systems 2021 , 185-234
14	Coherent Lightwave Systems 2021 , 359-411
13	Optical Transmitters 2021 , 67-105
12	Dispersion Management 2021 , 277-316
11	Loss Management 2021 , 235-275

9	Pulse compression 2021 , 255-308
8	Directional couplers 2021 , 57-107
7	Optical signal processing 2021 , 369-417
6	Fiber gratings 2021 , 1-55
5	Fiber-optic communications 2021 , 309-368
4	Quantum applications 2021 , 481-532
3	Fiber lasers 2021 , 193-254
2	Fiber amplifiers 2021 , 143-192

Control of Nonlinear Effects 2021, 317-357

Fiber interferometers **2021**, 109-141

10