
Ryoung Shin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9329415/publications.pdf Version: 2024-02-01

RYOLING SHIN

#	Article	IF	CITATIONS
1	Regulation of cation transports and cation homeostasis in higher plants. , 2022, , 437-453.		Ο
2	Nucleus-Encoded Thylakoid Protein, OsY3IP1, Confers Enhanced Tolerance to Saline and Alkaline Stresses in Rice. Rice Science, 2022, 29, 225-236.	3.9	3
3	Annexin 1 Is a Component of eATP-Induced Cytosolic Calcium Elevation in Arabidopsis thaliana Roots. International Journal of Molecular Sciences, 2021, 22, 494.	4.1	23
4	Contribution of marine macroalgae genes to plant potassium deficiency tolerance in transgenic Arabidopsis. Plant Biotechnology Reports, 2021, 15, 349-357.	1.5	2
5	Cesium tolerance is enhanced by a chemical which binds to BETA-GLUCOSIDASE 23 in Arabidopsis thaliana. Scientific Reports, 2021, 11, 21109.	3.3	5
6	Selenium Transport, Accumulation and Toxicity in Plants. Plant in Challenging Environments, 2021, , 237-259.	0.4	1
7	Syringic Acid Alleviates Cesium-Induced Growth Defect in Arabidopsis. International Journal of Molecular Sciences, 2020, 21, 9116.	4.1	8
8	Arabidopsis CNGC Family Members Contribute to Heavy Metal Ion Uptake in Plants. International Journal of Molecular Sciences, 2019, 20, 413.	4.1	63
9	Cesium Inhibits Plant Growth Primarily Through Reduction of Potassium Influx and Accumulation in Arabidopsis. Plant and Cell Physiology, 2019, 60, 63-76.	3.1	28
10	Contribution of KUPs to potassium and cesium accumulation appears complementary in Arabidopsis. Plant Signaling and Behavior, 2019, 14, 1554468.	2.4	12
11	Glutathione and Its Biosynthetic Intermediates Alleviate Cesium Stress in Arabidopsis. Frontiers in Plant Science, 2019, 10, 1711.	3.6	12
12	AtSKIP18 and AtSKIP31, F-box subunits of the SCF E3 ubiquitin ligase complex, mediate the degradation of 14-3-3 proteins in Arabidopsis. Biochemical and Biophysical Research Communications, 2017, 485, 174-180.	2.1	11
13	Discovery of E3 Ubiquitin Ligases That Alter Responses to Nitrogen Deficiency Using Rice Full-Length cDNA OvereXpressor (FOX)-Hunting System. Plant Molecular Biology Reporter, 2017, 35, 343-354.	1.8	1
14	A novel role for methyl cysteinate, a cysteine derivative, in cesium accumulation in Arabidopsis thaliana. Scientific Reports, 2017, 7, 43170.	3.3	15
15	Selection and functional analysis of a Pyropia yezoensis ammonium transporter PyAMT1 in potassium deficiency. Journal of Applied Phycology, 2017, 29, 2617-2626.	2.8	8
16	Cesium Uptake in Plants: Mechanism, Regulation and Application for Phytoremediation. , 2017, , 101-124.		4
17	Potassium sensing, signaling, and transport: toward improved potassium use efficiency in plants. , 2017, , 149-163.		4
18	Selective chemical binding enhances cesium tolerance in plants through inhibition of cesium uptake. Scientific Reports, 2015, 5, 8842.	3.3	27

RYOUNG SHIN

#	Article	IF	CITATIONS
19	14-3-3 Proteins Participate in Light Signaling through Association with PHYTOCHROME INTERACTING FACTORs. International Journal of Molecular Sciences, 2014, 15, 22801-22814.	4.1	20
20	Overexpression of a Novel Component Induces HAK5 and Enhances Growth in Arabidopsis. ISRN Botany, 2014, 2014, 1-9.	0.8	3
21	Strategies for Improving Potassium Use Efficiency in Plants. Molecules and Cells, 2014, 37, 575-584.	2.6	60
22	Transport, signaling, and homeostasis of potassium and sodium in plants. Journal of Integrative Plant Biology, 2014, 56, 231-249.	8.5	183
23	Intracellular Imaging of Cesium Distribution in <i>Arabidopsis</i> Using Cesium Green. ACS Applied Materials & Interfaces, 2014, 6, 8208-8211.	8.0	32
24	Cesium Inhibits Plant Growth through Jasmonate Signaling in Arabidopsis thaliana. International Journal of Molecular Sciences, 2013, 14, 4545-4559.	4.1	43
25	Identification and Characterization of Transcription Factors Regulating Arabidopsis HAK5. Plant and Cell Physiology, 2013, 54, 1478-1490.	3.1	94
26	The Arabidopsis AP2/ERF Transcription Factor RAP2.11 Modulates Plant Response to Low-Potassium Conditions. Molecular Plant, 2012, 5, 1042-1057.	8.3	157
27	Regulatory Roles of Cytokinins and Cytokinin Signaling in Response to Potassium Deficiency in Arabidopsis. PLoS ONE, 2012, 7, e47797.	2.5	120
28	14-3-3 Proteins fine-tune plant nutrient metabolism. FEBS Letters, 2011, 585, 143-147.	2.8	81
29	Transcriptional Regulatory Components Responding to Macronutrient Limitation. Journal of Plant Biology, 2011, 54, 286-293.	2.1	17
30	Determining novel functions of Arabidopsis14-3-3 proteins in central metabolic processes. BMC Systems Biology, 2011, 5, 192.	3.0	55
31	Receptor-Like Activity Evoked by Extracellular ADP in Arabidopsis Root Epidermal Plasma Membrane. Plant Physiology, 2011, 156, 1375-1385.	4.8	62
32	Ethylene Mediates Response and Tolerance to Potassium Deprivation in <i>Arabidopsis</i> Â. Plant Cell, 2009, 21, 607-621.	6.6	326
33	A Nuclear Factor Regulates Abscisic Acid Responses in Arabidopsis. Plant Physiology, 2009, 151, 1433-1445.	4.8	51
34	Plant extracellular ATP signalling by plasma membrane NADPH oxidase and Ca ²⁺ channels. Plant Journal, 2009, 58, 903-913.	5.7	191
35	The high affinity K ⁺ transporter AtHAK5 plays a physiological role <i>in planta</i> at very low K ⁺ concentrations and provides a caesium uptake pathway in <i>Arabidopsis</i> . Journal of Experimental Botany, 2008, 59, 595-607.	4.8	255
36	The <i>Arabidopsis</i> Transcription Factor MYB77 Modulates Auxin Signal Transduction. Plant Cell, 2007, 19, 2440-2453.	6.6	337

RYOUNG SHIN

#	Article	IF	CITATIONS
37	Phosphoproteomic identification of targets of the Arabidopsis sucrose nonfermenting-like kinase SnRK2.8 reveals a connection to metabolic processes. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6460-6465.	7.1	129
38	Nutrient Sensing and Signaling: NPKS. Annual Review of Plant Biology, 2007, 58, 47-69.	18.7	425
39	Transporters expressed during grape berry (Vitis vinifera L.) development are associated with an increase in berry size and berry potassium accumulation. Journal of Experimental Botany, 2006, 57, 3209-3216.	4.8	109
40	Reactive Oxygen Species and Root Hairs in Arabidopsis Root Response to Nitrogen, Phosphorus and Potassium Deficiency. Plant and Cell Physiology, 2005, 46, 1350-1357.	3.1	427
41	Capsicum annuum Tobacco Mosaic Virus-Induced Clone 1 Expression Perturbation Alters the Plant's Response to Ethylene and Interferes with the Redox Homeostasis. Plant Physiology, 2004, 135, 561-573.	4.8	14
42	Expression of KT/KUP Genes in Arabidopsis and the Role of Root Hairs in K+ Uptake. Plant Physiology, 2004, 134, 1135-1145.	4.8	296
43	Hydrogen peroxide mediates plant root cell response to nutrient deprivation. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 8827-8832.	7.1	539
44	Pathogenesisâ€related protein 10 isolated from hot pepper functions as a ribonuclease in an antiviral pathway. Plant Journal, 2004, 37, 186-198.	5.7	304
45	A novel TMV-induced hot pepper cell wall protein gene (CaTin2) is associated with virus-specific hypersensitive response pathway. Plant Molecular Biology, 2003, 51, 687-701.	3.9	14
46	The CaTin1 (Capsicum annuum TMV-induced Clone 1) and CaTin1-2 Genes are Linked Head-to-Head and Share a Bidirectional Promoter. Plant and Cell Physiology, 2003, 44, 549-554.	3.1	43
47	Differential Metal Selectivity and Gene Expression of Two Zinc Transporters from Rice. Plant Physiology, 2003, 133, 126-134.	4.8	307
48	Ectopic Expression of Tsi1 in Transgenic Hot Pepper Plants Enhances Host Resistance to Viral, Bacterial, and Oomycete Pathogens. Molecular Plant-Microbe Interactions, 2002, 15, 983-989.	2.6	85
49	Induction of pepper cDNA encoding a lipid transfer protein during the resistance response to tobacco mosaic virus. Plant Molecular Biology, 2002, 48, 243-254.	3.9	98
50	The potential use of a viral coat protein gene as a transgene screening marker and multiple virus resistance of pepper plants coexpressing coat proteins of cucumber mosaic virus and tomato mosaic virus. Transgenic Research, 2002, 11, 215-219.	2.4	48
51	A hot pepper cDNA encoding ascorbate peroxidase is induced during the incompatible interaction with virus and bacteria. Molecules and Cells, 2002, 14, 75-84.	2.6	9
52	Isolation of pepper mRNAs differentially expressed during the hypersensitive response to tobacco mosaic virus and characterization of a proteinase inhibitor gene. Plant Science, 2001, 161, 727-737.	3.6	59
53	Overexpression of the Tobacco Tsi1 Gene Encoding an EREBP/AP2–Type Transcription Factor Enhances Resistance against Pathogen Attack and Osmotic Stress in Tobacco. Plant Cell, 2001, 13, 1035-1046.	6.6	478
54	A translation elongation factor 1A (CaEF1A) gene from hot pepper (Capsicum annuum L.) is induced by the tobacco mosaic virus and by wounding. Journal of Plant Biology, 2001, 44, 199-204.	2.1	2