Diana Jurk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9329323/publications.pdf

Version: 2024-02-01

214527 94269 11,666 47 37 47 h-index citations g-index papers 55 55 55 12176 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Cellular Senescence: Defining a Path Forward. Cell, 2019, 179, 813-827.	13.5	1,551
2	Senolytics improve physical function and increase lifespan in old age. Nature Medicine, 2018, 24, 1246-1256.	15.2	1,384
3	Telomeres are favoured targets of a persistent DNA damage response in ageing and stress-induced senescence. Nature Communications, 2012, 3, 708.	5.8	693
4	Cellular senescence drives age-dependent hepatic steatosis. Nature Communications, 2017, 8, 15691.	5.8	673
5	Chronic inflammation induces telomere dysfunction and accelerates ageing in mice. Nature Communications, 2014, 5, 4172.	5.8	596
6	DNA damage response and cellular senescence in tissues of aging mice. Aging Cell, 2009, 8, 311-323.	3.0	566
7	Chronic senolytic treatment alleviates established vasomotor dysfunction in aged or atherosclerotic mice. Aging Cell, 2016, 15, 973-977.	3.0	540
8	A senescent cell bystander effect: senescenceâ€induced senescence. Aging Cell, 2012, 11, 345-349.	3.0	538
9	Mitochondria are required for proâ€ageing features of the senescent phenotype. EMBO Journal, 2016, 35, 724-742.	3.5	527
10	Postmitotic neurons develop a p21â€dependent senescenceâ€like phenotype driven by a DNA damage response. Aging Cell, 2012, 11, 996-1004.	3.0	434
11	Targeting senescent cells alleviates obesityâ€induced metabolic dysfunction. Aging Cell, 2019, 18, e12950.	3.0	395
12	Lengthâ€independent telomere damage drives postâ€mitotic cardiomyocyte senescence. EMBO Journal, 2019, 38, .	3.5	307
13	Obesity-Induced Cellular Senescence Drives Anxiety and Impairs Neurogenesis. Cell Metabolism, 2019, 29, 1061-1077.e8.	7.2	293
14	A Potent and Specific CD38 Inhibitor Ameliorates Age-Related Metabolic Dysfunction by Reversing Tissue NAD+ Decline. Cell Metabolism, 2018, 27, 1081-1095.e10.	7.2	238
15	Quantitative assessment of markers for cell senescence. Experimental Gerontology, 2010, 45, 772-778.	1.2	208
16	Telomere dysfunction in ageing and age-related diseases. Nature Cell Biology, 2022, 24, 135-147.	4.6	194
17	Mitochondria-to-nucleus retrograde signaling drives formation of cytoplasmic chromatin and inflammation in senescence. Genes and Development, 2020, 34, 428-445.	2.7	188
18	Wholeâ€body senescent cell clearance alleviates ageâ€related brain inflammation and cognitive impairment in mice. Aging Cell, 2021, 20, e13296.	3.0	186

#	Article	IF	Citations
19	Oxidative stress and life histories: unresolved issues and current needs. Ecology and Evolution, 2015, 5, 5745-5757.	0.8	169
20	Transplanted Senescent Cells Induce an Osteoarthritis-Like Condition in Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2017, 72, glw154.	1.7	163
21	Senolytic Drugs: Reducing Senescent Cell Viability to Extend Health Span. Annual Review of Pharmacology and Toxicology, 2021, 61, 779-803.	4.2	151
22	Senescent human melanocytes drive skin ageing via paracrine telomere dysfunction. EMBO Journal, 2019, 38, e101982.	3.5	136
23	Oxidation of SQSTM1/p62 mediates the link between redox state and protein homeostasis. Nature Communications, 2018, 9, 256.	5.8	132
24	NFκB1 is a suppressor of neutrophil-driven hepatocellular carcinoma. Nature Communications, 2015, 6, 6818.	5.8	131
25	DNA damage response at telomeres contributes to lung aging and chronic obstructive pulmonary disease. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 309, L1124-L1137.	1.3	128
26	SQSTM1/p62 mediates crosstalk between autophagy and the UPS in DNA repair. Autophagy, 2016, 12, 1917-1930.	4.3	120
27	Adult-onset, short-term dietary restriction reduces cell senescence in mice. Aging, 2010, 2, 555-566.	1.4	116
28	Neutrophils induce paracrine telomere dysfunction and senescence in ROSâ€dependent manner. EMBO Journal, 2021, 40, e106048.	3.5	101
29	17α-Estradiol Alleviates Age-related Metabolic and Inflammatory Dysfunction in Male Mice Without Inducing Feminization. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2017, 72, 3-15.	1.7	91
30	The DNA Damage Response in Neurons: Die by Apoptosis or Survive in a Senescence-Like State?. Journal of Alzheimer's Disease, 2017, 60, S107-S131.	1.2	89
31	Expansion and Cell-Cycle Arrest: Common Denominators of Cellular Senescence. Trends in Biochemical Sciences, 2019, 44, 996-1008.	3.7	71
32	Temporal inhibition of autophagy reveals segmental reversal of ageing with increased cancer risk. Nature Communications, 2020, 11, 307.	5.8	62
33	Characterization of cellular senescence in aging skeletal muscle. Nature Aging, 2022, 2, 601-615.	5.3	61
34	Rapamycin improves healthspan but not inflammaging in <i>nflºb1</i> ^{â^'/â^'} mice. Aging Cell, 2019, 18, e12882.	3.0	59
35	Sustained telomere length in hepatocytes and cholangiocytes with increasing age in normal liver. Hepatology, 2012, 56, 1510-1520.	3.6	56
36	A Stochastic Step Model of Replicative Senescence Explains ROS Production Rate in Ageing Cell Populations. PLoS ONE, 2012, 7, e32117.	1.1	50

#	Article	IF	CITATIONS
37	Antiâ€inflammatory treatment rescues memory deficits during aging in <i>nfkb1</i> ^{â^'/â^'} mice. Aging Cell, 2020, 19, e13188.	3.0	38
38	Orally-active, clinically-translatable senolytics restore \hat{l}_{\pm} -Klotho in mice and humans. EBioMedicine, 2022, 77, 103912.	2.7	27
39	Short senolytic or senostatic interventions rescue progression of radiation-induced frailty and premature ageing in mice. ELife, 2022, 11 , .	2.8	27
40	Moderate Exercise Inhibits Age-Related Inflammation, Liver Steatosis, Senescence, and Tumorigenesis. Journal of Immunology, 2021, 206, 904-916.	0.4	20
41	Senescence explains age- and obesity-related liver steatosis. Cell Stress, 2017, 1, 70-72.	1.4	16
42	Telmisartan prevents high-fat diet-induced neurovascular impairments and reduces anxiety-like behavior. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 2356-2369.	2.4	13
43	Robust Multiparametric Assessment of Cellular Senescence. Methods in Molecular Biology, 2013, 965, 409-419.	0.4	12
44	Amelioration of ageâ€related brain function decline by Bruton's tyrosine kinase inhibition. Aging Cell, 2020, 19, e13079.	3.0	12
45	Senolytic drugs: Beyond the promise and the hype. Mechanisms of Ageing and Development, 2022, 202, 111631.	2.2	2
46	A novel Sudan Black B-based analogue revives lipofuscin as a biomarker for in vivo senescence. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2018, 473, 781-783.	1.4	0
47	Cellular senescence during aging and chronic liver diseases. , 2022, , 155-178.		O