Mark Coleman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9329240/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Variations in water-balance components and carbon stocks in poplar plantations with differing water inputs over a whole rotation: implications for sustainable forest management under climate change. Agricultural and Forest Meteorology, 2022, 320, 108958.	4.8	14
2	ls it necessary to apply chemical weed control in short-rotation poplar plantations on deep soil sites?. Industrial Crops and Products, 2022, 184, 115025.	5.2	2
3	Stand development modifies effects of soil water availability on poplar fine-root traits: evidence from a six-year experiment. Plant and Soil, 2022, 480, 165-184.	3.7	11
4	The practice and economics of hybrid poplar biomass production for biofuels and bioproducts in the Pacific Northwest. Bioenergy Research, 2021, 14, 543-560.	3.9	17
5	lrrigation management in poplar (Populus spp.) plantations: A review. Forest Ecology and Management, 2021, 494, 119330.	3.2	32
6	Converting Conventional Agriculture to Poplar Bioenergy Crops: Soil Chemistry. Communications in Soil Science and Plant Analysis, 2020, 51, 364-379.	1.4	4
7	Biochar influences nitrogen availability in Andisols of north Idaho forests. SN Applied Sciences, 2020, 2, 1.	2.9	1
8	Forest soil respiration and exoenzyme activity in western North America following thinning, residue removal for biofuel production, and compensatory soil amendments. GCB Bioenergy, 2020, 12, 223-236.	5.6	9
9	Soil greenhouse gas, carbon content, and tree growth response to biochar amendment in western United States forests. GCB Bioenergy, 2019, 11, 660-671.	5.6	39
10	Site sensitive maximum stand density index models for mixed conifer stands across the Inland Northwest, USA. Forest Ecology and Management, 2019, 433, 396-404.	3.2	23
11	Idaho forest growth response to postâ€ŧhinning energy biomass removal and complementary soil amendments. GCB Bioenergy, 2018, 10, 246-261.	5.6	14
12	Stand development and other intrinsic factors largely control fine-root dynamics with only subtle modifications from resource availability. Tree Physiology, 2018, 38, 1805-1819.	3.1	23
13	Biochar as a growing media component for containerized production of Douglas-fir. Canadian Journal of Forest Research, 2018, 48, 581-588.	1.7	16
14	Converting conventional agriculture to poplar bioenergy crops: soil greenhouse gas flux. Scandinavian Journal of Forest Research, 2018, 33, 781-792.	1.4	7
15	Grand Fir Nutrient Management in the Inland Northwestern USA. Forests, 2016, 7, 261.	2.1	4
16	Opportunities and Uses of Biochar on Forest Sites in North America. , 2016, , 315-335.		18
17	The response of light, water, and nutrient availability to pre-commercial thinning in dry inland Douglas-fir forests. Forest Ecology and Management, 2016, 363, 98-109.	3.2	60
18	Growth responses of narrow or broad site adapted tree species to a range of resource availability treatments after a full harvest rotation. Forest Ecology and Management, 2016, 362, 107-119.	3.2	45

MARK COLEMAN

#	Article	IF	CITATIONS
19	Biochar Soil Amendment Effects on Arsenic Availability to Mountain Brome (<i>Bromus) Tj ETQq1 1 0.784314 rg</i>	BT/Overlc 2.0	ock ₈ 10 Tf 50
20	Nutrition of Douglasâ€fir in the Inland Northwest. Soil Science Society of America Journal, 2014, 78, S11.	2.2	15
21	Soil Soluble Nitrogen Availability across an Elevation Gradient in a Coldâ€Temperate Forest Ecosystem. Soil Science Society of America Journal, 2014, 78, S217.	2.2	7
22	Survival and growth of a range of Populus clones inÂcentral South Carolina USA through age ten: DoÂearly assessments reflect longer-term survival and growth trends?. Biomass and Bioenergy, 2013, 49, 260-272.	5.7	29
23	Optimal nitrogen application rates for three intensively-managed hardwood tree species in the southeastern USA. Forest Ecology and Management, 2013, 303, 131-142.	3.2	20
24	Characterization of Forest Crops with a Range of Nutrient and Water Treatments Using AISA Hyperspectral Imagery. GIScience and Remote Sensing, 2012, 49, 463-491.	5.9	13
25	A detrimental soil disturbance prediction model for ground-based timber harvesting. Canadian Journal of Forest Research, 2012, 42, 821-830.	1.7	23
26	Examining soil parent material influence over Douglas-fir stem growth response to fertilization: Taking advantage of information from spatiotemporally distributed experiments. Forest Ecology and Management, 2012, 286, 101-107.	3.2	6
27	Functional groups show distinct differences in nitrogen cycling during early stand development: implications for forest management. Plant and Soil, 2012, 351, 219-236.	3.7	24
28	Foliar Sulfate-Sulfur as a Nutrient Diagnostic Tool for Interior Douglas-Fir. Western Journal of Applied Forestry, 2011, 26, 147-150.	0.5	6
29	Assessing Bioenergy Harvest Risks: Geospatially Explicit Tools for Maintaining Soil Productivity in Western US Forests. Forests, 2011, 2, 797-813.	2.1	21
30	Not sure about a PhD? Work on a "pre-PhD― Frontiers in Ecology and the Environment, 2010, 8, 105-106.	4.0	0
31	Woody energy crops in the southeastern United States: Two centuries of practitioner experienceâ~†. Biomass and Bioenergy, 2010, 34, 1655-1666.	5.7	81
32	Soil and microbial respiration in a loblolly pine plantation in response to seven years of irrigation and fertilization. Forest Ecology and Management, 2009, 258, 2431-2438.	3.2	57
33	Hyperspectral remote sensing analysis of short rotation woody crops grown with controlled nutrient and irrigation treatments. Geocarto International, 2009, 24, 293-312.	3.5	41
34	Fertilization but not irrigation influences hydraulic traits in plantation-grown loblolly pine. Forest Ecology and Management, 2008, 255, 3331-3339.	3.2	36
35	Above- and below-ground biomass accumulation, production, and distribution of sweetgum and loblolly pine grown with irrigation and fertilization. Canadian Journal of Forest Research, 2008, 38, 1335-1348.	1.7	83
36	Influence of irrigation and fertilization on transpiration and hydraulic properties of Populus deltoides. Tree Physiology, 2007, 27, 765-774.	3.1	23

MARK COLEMAN

#	Article	IF	CITATIONS
37	Soil carbon, after 3 years, under short-rotation woody crops grown under varying nutrient and water availability. Biomass and Bioenergy, 2007, 31, 793-801.	5.7	21
38	Spatial and temporal patterns of root distribution in developing stands of four woody crop species grown with drip irrigation and fertilization. Plant and Soil, 2007, 299, 195-213.	3.7	61
39	Survival and growth of 31 Populus clones in South Carolinaâ [~] †. Biomass and Bioenergy, 2006, 30, 750-758.	5.7	39
40	Multiple factors affect pest and pathogen damage on 31 Populus clones in South Carolinaâ~†. Biomass and Bioenergy, 2006, 30, 759-768.	5.7	22
41	Post-establishment fertilization of Minnesota hybrid poplar plantations. Biomass and Bioenergy, 2006, 30, 740-749.	5.7	53
42	Radiation-use efficiency and gas exchange responses to water and nutrient availability in irrigated and fertilized stands of sweetgum and sycamore. Tree Physiology, 2005, 25, 191-200.	3.1	30
43	Forest production responses to irrigation and fertilization are not explained by shifts in allocation. Forest Ecology and Management, 2005, 208, 137-152.	3.2	137
44	The Response of Belowground Carbon Allocation in Forests to Global Change. , 2005, , 119-154.		35
45	Carbon allocation and nitrogen acquisition in a developing <i>Populus deltoides</i> plantation. Tree Physiology, 2004, 24, 1347-1357.	3.1	80
46	Fine root dynamics in a developing Populus deltoides plantation. Tree Physiology, 2004, 24, 651-660.	3.1	67
47	Comparing Soil Carbon of Short Rotation Poplar Plantations with Agricultural Crops and Woodlots in North Central United States. Environmental Management, 2004, 33, S299.	2.7	77
48	Dris Analysis Identifies A Common Potassium Imbalance In Sweetgum Plantations. Communications in Soil Science and Plant Analysis, 2003, 34, 1919-1941.	1.4	7
49	Growth and crown architecture of two aspen genotypes exposed to interacting ozone and carbon dioxide. Environmental Pollution, 2001, 115, 319-334.	7.5	38
50	Contrasting fine-root production, survival and soil CO2 efflux in pine and poplar plantations. Plant and Soil, 2000, 225, 129-139.	3.7	93
51	Effects of Tropospheric O3 on Trembling Aspen and Interaction with CO2: Results from an O3-Gradient and a Face Experiment. , 1999, , 311-322.		3
52	Title is missing!. Water, Air, and Soil Pollution, 1999, 116, 311-322.	2.4	106
53	Growth and physiology of aspen supplied with different fertilizer addition rates. Physiologia Plantarum, 1998, 103, 513-526.	5.2	50
54	Genetic control of responses to interacting tropospheric ozone and CO2 in Populus tremuloides. Chemosphere, 1998, 36, 807-812.	8.2	47

MARK COLEMAN

#	Article	IF	CITATIONS
55	Growth of five hybrid poplar genotypes exposed to interacting elevated CO ₂ and O ₃ . Canadian Journal of Forest Research, 1998, 28, 1706-1716.	1.7	73
56	Changes in growth, leaf abscission, and biomass associated with seasonal tropospheric ozone exposures of <i>Populustremuloides</i> clones and seedlings. Canadian Journal of Forest Research, 1996, 26, 23-37.	1.7	128
57	Photosynthetic responses of aspen clones to simultaneous exposures of ozone and CO2. Canadian Journal of Forest Research, 1996, 26, 639-648.	1.7	110
58	Root growth and physiology of potted and field-grown trembling aspen exposed to tropospheric ozone. Tree Physiology, 1996, 16, 145-152.	3.1	78
59	Photosynthetic productivity of aspen clones varying in sensitivity to tropospheric ozone. Tree Physiology, 1995, 15, 585-592.	3.1	80
60	Carbon allocation and partitioning in aspen clones varying in sensitivity to tropospheric ozone. Tree Physiology, 1995, 15, 593-604.	3.1	102
61	Root cold hardiness and native distribution of subalpine conifers. Canadian Journal of Forest Research, 1992, 22, 932-938.	1.7	45
62	Root hydraulic conductivity and xylem sap levels of zeatin riboside and abscisic acid in ectomycorrhizal Douglas fir seedlings. New Phytologist, 1990, 115, 275-284.	7.3	52
63	Pure culture response of ectomycorrhizal fungi to imposed water stress. Canadian Journal of Botany, 1989, 67, 29-39.	1.1	115
64	Physiology and metabolism of ectomycorrhizae. Annales Des Sciences Forestières, 1989, 46, 697s-705s.	1.2	4