Gajanan S Bhat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9329167/publications.pdf

Version: 2024-02-01

361045 189595 2,710 65 20 50 citations h-index g-index papers 67 67 67 3328 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Recent progress in developing ballistic and anti-impact materials: Nanotechnology and main approaches. Defence Technology, 2023, 21, 33-61.	2.1	12
2	Microstructure and performance characteristics of acoustic insulation materials from post-consumer recycled denim fabrics. Journal of Industrial Textiles, 2022, 51, 6001S-6027S.	1.1	16
3	Microstructure and physical properties of composite nonwovens produced by incorporating cotton fibers in elastic spunbond and meltblown webs for medical textiles. Journal of Industrial Textiles, 2022, 51, 6028S-6050S.	1.1	5
4	Barrier and mechanical properties of water-based polyurethane-coated hydroentangled cotton nonwovens. Journal of Coatings Technology Research, 2022, 19, 1255-1267.	1.2	6
5	Flexible temperature sensor based on RGO/CNTs@PBT melting blown nonwoven fabric. Sensors and Actuators A: Physical, 2022, 339, 113519.	2.0	15
6	Progress and challenges in self-healing composite materials. Materials Advances, 2021, 2, 1896-1926.	2.6	51
7	Effect of Process Parameters on Fiber Diameter and Fiber Distribution of Melt-Blown Polypropylene Microfibers Produced by Biax Line. Fibers and Polymers, 2021, 22, 285-293.	1.1	8
8	Effect of microfiber layers on acoustical absorptive properties of nonwoven fabrics. Journal of Industrial Textiles, 2020, 50, 312-332.	1.1	19
9	High performance flexible wearable strain sensor based on rGO and AgNWs decorated PBT melt-blown non-woven fabrics. Sensors and Actuators A: Physical, 2020, 315, 112174.	2.0	15
10	Preparation and Characterization of magnetic PLA/Fe ₃ O ₄ -g-PLLA composite melt blown nonwoven fabric for air filtration. Journal of Engineered Fibers and Fabrics, 2020, 15, 155892502096822.	0.5	6
11	Environmentally-friendly thermal and acoustic insulation materials from recycled textiles. Journal of Environmental Management, 2019, 251, 109536.	3.8	127
12	Single-step process to improve the mechanical properties of carbon nanotube yarn. Beilstein Journal of Nanotechnology, 2018, 9, 545-554.	1.5	7
13	Improving mechanical properties of carbon nanotube fibers through simultaneous solid-state cycloaddition and crosslinking. Nanotechnology, 2017, 28, 145603.	1.3	25
14	Preparation and properties of poly (lactic acid)/magnetic Fe ₃ O ₄ composites and nonwovens. RSC Advances, 2017, 7, 41929-41935.	1.7	27
15	Polyacrylonitrile nanocomposite fibers from acrylonitrile-grafted carbon nanofibers. Composites Part B: Engineering, 2017, 130, 64-69.	5.9	16
16	Porosity and barrier properties of polyethylene meltblown nonwovens. Journal of the Textile Institute, 2017, 108, 1035-1040.	1.0	34
17	Recent Developments in Carbon Fibers and Carbon Nanotube-Based Fibers: A Review. Polymer Reviews, 2017, 57, 339-368.	5.3	82
18	Effect of Electron Beam and Gamma Rays on Carbon Nanotube Yarn Structure. Materials Research, 2017, 20, 386-392.	0.6	20

#	Article	IF	CITATIONS
19	Effect of PCL and Compatibilizer on the Tensile and Barrier Properties of PLA/PCL Films. Porrime, 2017, 41, 181.	0.0	11
20	Structure and mechanical properties of polyethylene melt blown nonwovens. International Journal of Clothing Science and Technology, 2016, 28, 780-793.	0.5	30
21	Effect of solvent/polymer infiltration and irradiation on microstructure and tensile properties of carbon nanotube yarns. Journal of Materials Science, 2016, 51, 10215-10228.	1.7	11
22	Investigation of Nanofiber Breakup in the Melt-Blowing Process. Industrial & Engineering Chemistry Research, 2016, 55, 3150-3156.	1.8	45
23	Nanofiber Manufacture, Properties, and Applications 2013. Journal of Nanomaterials, 2014, 2014, 1-2.	1.5	1
24	Macroscopic Properties of Restacked, Redoxâ€Liquid Exfoliated Graphite and Graphite Mimics Produced in Bulk Quantities. Advanced Functional Materials, 2014, 24, 4969-4977.	7.8	4
25	Investigation of the morphology of polypropylene â^ nanoclay nanocomposites. Polymer International, 2014, 63, 1112-1121.	1.6	7
26	High-Yield Synthesis of Mesoscopic Conductive and Dispersible Carbon Nanostructures via Ultrasonication of Commercial Precursors. Industrial & Engineering Chemistry Research, 2014, 53, 9781-9791.	1.8	1
27	Meltblown nanofiber media for enhanced quality factor. Fibers and Polymers, 2013, 14, 660-668.	1.1	107
28	Structure and properties of polypropylene-nanoclay composites. Journal of Polymer Research, 2013, 20, 1.	1.2	17
29	Filtration Efficiency of Submicrometer Filters. Industrial & Engineering Chemistry Research, 2013, 52, 16513-16518.	1.8	29
30	Flame-retardant cotton barrier nonwovens for mattresses. Journal of Fire Sciences, 2013, 31, 276-290.	0.9	3
31	Nanofiber Manufacture, Properties, and Applications. Journal of Nanomaterials, 2013, 2013, 1-1.	1.5	5
32	Influence of Molecular Orientation on the Melting Behavior of Poly(phenylene sulfide) Fibers. Journal of Engineered Fibers and Fabrics, 2013, 8, 155892501300800.	0.5	0
33	Flame retardant antibacterial cotton high-loft nonwoven fabrics. Journal of Industrial Textiles, 2012, 41, 281-291.	1.1	4
34	Different crystallization mechanisms in polypropylene–nanoclay nanocomposite with different weight percentage of nanoclay additives. Journal of Materials Research, 2012, 27, 1360-1371.	1.2	11
35	Morphology and Properties of Nylon 6 Blown Films Reinforced with Different Weight Percentage of Nanoclay Additives. International Journal of Polymer Science, 2012, 2012, 1-14.	1.2	13
36	Structure and properties development in poly(phenylene sulfide) fibers. II. Effect of oneâ€zone draw annealing. Journal of Applied Polymer Science, 2012, 125, 1890-1900.	1.3	6

#	Article	IF	CITATIONS
37	Structure and properties enhancement in poly(phenylene sulfide) melt spun fibers. III. Effect of two zone drawing and annealing. Journal of Applied Polymer Science, 2012, 125, 1693-1700.	1.3	5
38	Structure and properties development in poly(phenylene sulfide) fibers, part I: Effect of material and melt spinning process variables. Journal of Applied Polymer Science, 2011, 122, 3110-3121.	1.3	8
39	Nanoparticle effects on structure and properties of polypropylene meltblown webs. Journal of Applied Polymer Science, 2010, 115, 1062-1072.	1.3	31
40	Nanoparticle effects on the morphology and mechanical properties of polypropylene spunbond webs. Journal of Applied Polymer Science, 2010, 118, 3141-3155.	1.3	12
41	Processing and Characterization of Flame Retardant Cotton Blend Nonwovens for Soft Furnishings to Meet Federal Flammability Standards. Journal of Industrial Textiles, 2009, 38, 251-262.	1.1	22
42	Thermal bonding of polypropylene films and fibers. Journal of Applied Polymer Science, 2008, 110, 3047-3058.	1.3	15
43	Development of Structure and Properties during Spunbonding of Metallocene Catalyzed Polypropylene. Polymer-Plastics Technology and Engineering, 2008, 47, 542-549.	1.9	1
44	Nanoclay Reinforced Fibers and Nonwovens. Journal of Engineered Fibers and Fabrics, 2008, 3, 155892500800300.	0.5	22
45	Development of structure and properties during thermal calendering of polylactic acid (PLA) fiber webs. EXPRESS Polymer Letters, 2008, 2, 49-56.	1.1	20
46	PROCESSING POSTCONSUMER RECYCLED PLASTICS., 2007,, 357-383.		0
47	Electrospinning of nanofibers. Journal of Applied Polymer Science, 2005, 96, 557-569.	1.3	1,401
48	Effect of processing conditions on the structure and properties of polypropylene spunbond fabrics. Journal of Applied Polymer Science, 2005, 98, 2355-2364.	1.3	29
49	Statistical Analysis of the Effect of Processing Conditions on the Strength of Thermal Point-Bonded Cotton-Based Nonwovens. Textile Reseach Journal, 2005, 75, 35-38.	1.1	4
50	Binder fiber distribution and tensile properties of thermally point bonded cotton-based nonwovens. Journal of Applied Polymer Science, 2004, 91, 3148-3155.	1.3	4
51	Thermal bonding of polypropylene nonwovens: Effect of bonding variables on the structure and properties of the fabrics. Journal of Applied Polymer Science, 2004, 92, 3593-3600.	1.3	68
52	Extruded continuous filament nonwovens: Advances in scientific aspects. Journal of Applied Polymer Science, 2002, 83, 572-585.	1.3	65
53	Development of structure and properties during spunbonding of propylene polymers. Thermochimica Acta, 2002, 392-393, 323-328.	1.2	10
54	Structure and properties of polypropylene fibers during thermal bonding. Thermochimica Acta, 2001, 367-368, 155-160.	1.2	16

#	Article	IF	CITATIONS
55	Thermal properties of elastic fibers. Thermochimica Acta, 2001, 367-368, 161-164.	1.2	24
56	Processing of a High Temperature Imide Copolymer into Hollow Fibers. Materials and Manufacturing Processes, 2000, 15, 533-545.	2.7	1
57	Conversion of Recycled Polymers/Fibers Into Melt-Blown Nonwovens. Polymer-Plastics Technology and Engineering, 1999, 38, 499-511.	1.9	5
58	Structure and property characterization of spunbonded filaments and webs using thermal analysis. Journal of Applied Polymer Science, 1998, 69, 421-434.	1.3	5
59	Development of the Structure and Properties of Polypropylene Copolymer and Homopolymer Filaments during a Spunbonding Process. Journal of the Textile Institute, 1998, 89, 289-303.	1.0	6
60	Evolution of Structure and Properties in a Spunbonding Process. Textile Reseach Journal, 1998, 68, 27-35.	1,1	18
61	Biodegradable and Tensile Properties of Cotton/Cellulose Acetate Nonwovens. Textile Reseach Journal, 1996, 66, 230-237.	1.1	24
62	Nonwovens as Three-Dimensional Textiles for Composites. Materials and Manufacturing Processes, 1995, 10, 667-688.	2.7	34
63	Rapid stabilization of acrylic fibers using ammonia: Effect on structure and morphology. Journal of Applied Polymer Science, 1993, 49, 2207-2219.	1.3	16
64	Thermal characterization of sulfonated polyethylene fibers. Thermochimica Acta, 1993, 226, 123-132.	1.2	6
65	New aspects in the stabilization of acrylic fibers for carbon fibers. Carbon, 1990, 28, 377-385.	5.4	40