Jacob H De Boer

List of Publications by Citations

Source: https://exaly.com/author-pdf/932889/jacob-h-de-boer-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

60 13,969 224 110 h-index g-index citations papers 6.79 15,236 236 7.9 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
224	Phosphorus flame retardants: properties, production, environmental occurrence, toxicity and analysis. <i>Chemosphere</i> , 2012 , 88, 1119-53	8.4	1599
223	Levels and trends of brominated flame retardants in the European environment. <i>Chemosphere</i> , 2006 , 64, 187-208	8.4	641
222	Hexabromocyclododecanes (HBCDs) in the environment and humans: a review. <i>Environmental Science & Environmental Science & Envi</i>	10.3	630
221	Distribution and fate of HBCD and TBBPA brominated flame retardants in North Sea estuaries and aquatic food webs. <i>Environmental Science & Environmental Science & Environment</i>	10.3	460
220	An integrated assessment of estrogenic contamination and biological effects in the aquatic environment of The Netherlands. <i>Chemosphere</i> , 2005 , 59, 511-24	8.4	375
219	Determination of brominated flame retardants, with emphasis on polybrominated diphenyl ethers (PBDEs) in environmental and human samplesa review. <i>Environment International</i> , 2003 , 29, 735-56	12.9	348
218	A novel abbreviation standard for organobromine, organochlorine and organophosphorus flame retardants and some characteristics of the chemicals. <i>Environment International</i> , 2012 , 49, 57-82	12.9	316
217	Levels of polybrominated diphenyl ether (PBDE) flame retardants in animals representing different trophic levels of the North Sea food Web. <i>Environmental Science & Environmental Science & Environme</i>	10.3	293
216	Do flame retardants threaten ocean life?. <i>Nature</i> , 1998 , 394, 28-9	50.4	277
215	Polybrominated diphenyl ethers in influents, suspended particulate matter, sediments, sewage treatment plant and effluents and biota from the Netherlands. <i>Environmental Pollution</i> , 2003 , 122, 63-7	74 ^{9.3}	265
214	Indoor contamination with hexabromocyclododecanes, polybrominated diphenyl ethers, and perfluoroalkyl compounds: an important exposure pathway for people?. <i>Environmental Science & Environmental Science</i>	10.3	241
213	Chlorinated paraffins in the environment: A review on their production, fate, levels and trends between 2010 and 2015. <i>Chemosphere</i> , 2016 , 155, 415-428	8.4	187
212	A review of semi-volatile organic compounds (SVOCs) in the indoor environment: occurrence in consumer products, indoor air and dust. <i>Chemosphere</i> , 2018 , 201, 466-482	8.4	155
211	Distribution of organobrominated and organochlorinated contaminants in Belgian human adipose tissue. <i>Environmental Research</i> , 2002 , 88, 210-8	7.9	150
210	Liquid chromatography-tandem mass spectrometry method for the detection of marine lipophilic toxins under alkaline conditions. <i>Journal of Chromatography A</i> , 2009 , 1216, 1421-30	4.5	138
209	Extraction and clean-up strategies for the analysis of poly- and perfluoroalkyl substances in environmental and human matrices. <i>Journal of Chromatography A</i> , 2007 , 1153, 172-85	4.5	138
208	A Robust Thermal Modulator for Comprehensive Two-Dimensional Gas Chromatography. <i>Journal of High Resolution Chromatography</i> , 1999 , 22, 3-10		135

(2013-2001)

207	Method for the analysis of polybrominated diphenylethers in sediments and biota. <i>TrAC - Trends in Analytical Chemistry</i> , 2001 , 20, 591-599	14.6	134
206	Retention-time database of 126 polybrominated diphenyl ether congeners and two bromkal technical mixtures on seven capillary gas chromatographic columns. <i>Journal of Chromatography A</i> , 2005 , 1065, 239-49	4.5	129
205	Tracing organophosphorus and brominated flame retardants and plasticizers in an estuarine food web. <i>Science of the Total Environment</i> , 2015 , 505, 22-31	10.2	125
204	High-resolution separation of polychlorinated biphenyls by comprehensive two-dimensional gas chromatography. <i>Journal of Chromatography A</i> , 2002 , 958, 203-18	4.5	122
203	Organophosphorus flame retardants (PFRs) and plasticizers in house and car dust and the influence of electronic equipment. <i>Chemosphere</i> , 2014 , 116, 3-9	8.4	116
202	Levels of polybrominated diphenyl ether flame retardants in sediment cores from Western Europe. <i>Environmental Science & Environmental Science & Envir</i>	10.3	112
201	Struggle for quality in determination of perfluorinated contaminants in environmental and human samples. <i>Environmental Science & Environmental Scienc</i>	10.3	110
200	Chlorobiphenyls in bound and non-bound lipids of fishes; comparison of different extraction methods. <i>Chemosphere</i> , 1988 , 17, 1803-1810	8.4	109
199	Characterisation of fatty acids in biological oil samples using comprehensive multidimensional gas chromatography. <i>Journal of Chromatography A</i> , 2001 , 910, 95-103	4.5	106
198	Developments in the use of chromatographic techniques in marine laboratories for the determination of halogenated contaminants and polycyclic aromatic hydrocarbons. <i>Journal of Chromatography A</i> , 2003 , 1000, 223-51	4.5	105
197	Decreasing eel stocks: survival of the fattest?. Ecology of Freshwater Fish, 2009, 18, 197-214	2.1	102
196	Halogenated contaminants in farmed salmon, trout, tilapia, pangasius, and shrimp. <i>Environmental Science & Environmental Scien</i>	10.3	101
195	Bisphenol A and replacements in thermal paper: A review. <i>Chemosphere</i> , 2017 , 182, 691-706	8.4	99
194	First world-wide interlaboratory study on polybrominated diphenylethers (PBDEs). <i>Chemosphere</i> , 2002 , 46, 625-33	8.4	96
193	Recent developments in capabilities for analysing chlorinated paraffins in environmental matrices: A review. <i>Chemosphere</i> , 2015 , 136, 259-72	8.4	95
192	Brominated flame retardants in fish and shellfish - levels and contribution of fish consumption to dietary exposure of Dutch citizens to HBCD. <i>Molecular Nutrition and Food Research</i> , 2008 , 52, 194-203	5.9	95
191	Advances in the gas chromatographic determination of persistent organic pollutants in the aquatic environment. <i>Journal of Chromatography A</i> , 2008 , 1186, 161-82	4.5	93
190	Organophosphorus flame-retardant and plasticizer analysis, including recommendations from the first worldwide interlaboratory study. <i>TrAC - Trends in Analytical Chemistry</i> , 2013 , 43, 217-228	14.6	92

189	Marine toxins: chemistry, toxicity, occurrence and detection, with special reference to the Dutch situation. <i>Toxins</i> , 2010 , 2, 878-904	4.9	91
188	Non-ortho and mono-ortho substituted chlorobiphenyls and chlorinated dibenzo-p-dioxins and dibenzofurans in marine and freshwater fish and shellfish from The Netherlands. <i>Chemosphere</i> , 1993 , 26, 1823-1842	8.4	89
187	Determination of polybrominated diphenyl ethers and polychlorinated biphenyls in human adipose tissue by large-volume injection-narrow-bore capillary gas chromatography/electron impact low-resolution mass spectrometry. <i>Analytical Chemistry</i> , 2002 , 74, 790-8	7.8	88
186	Significant improvements in the analysis of perfluorinated compounds in water and fish: results from an interlaboratory method evaluation study. <i>Journal of Chromatography A</i> , 2009 , 1216, 401-9	4.5	86
185	Screening of lipophilic marine toxins in shellfish and algae: development of a library using liquid chromatography coupled to orbitrap mass spectrometry. <i>Analytica Chimica Acta</i> , 2011 , 685, 176-85	6.6	84
184	Dietary intake and risk evaluation of polybrominated diphenyl ethers in The Netherlands. <i>Molecular Nutrition and Food Research</i> , 2008 , 52, 204-16	5.9	82
183	Critical review of the analysis of non- and mono-ortho-chlorobiphenyls. <i>Journal of Chromatography A</i> , 1995 , 703, 417-465	4.5	80
182	Solid phase extraction for removal of matrix effects in lipophilic marine toxin analysis by liquid chromatography-tandem mass spectrometry. <i>Analytical and Bioanalytical Chemistry</i> , 2009 , 394, 1213-26	4.4	78
181	Pitfalls in the analysis of brominated flame retardants in environmental, human and food samples I including results of three international interlaboratory studies. <i>TrAC - Trends in Analytical Chemistry</i> , 2006 , 25, 364-372	14.6	78
180	Presence of diphenyl phosphate and aryl-phosphate flame retardants in indoor dust from different microenvironments in Spain and the Netherlands and estimation of human exposure. <i>Environment International</i> , 2018 , 112, 59-67	12.9	71
179	Group separation of organohalogenated compounds by means of comprehensive two-dimensional gas chromatography. <i>Journal of Chromatography A</i> , 2005 , 1086, 29-44	4.5	71
178	Determination of the brominated flame retardant, hexabromocyclodocane, in sediments and biota by liquid chromatography-electrospray ionisation mass spectrometry. <i>TrAC - Trends in Analytical Chemistry</i> , 2006 , 25, 343-349	14.6	69
177	Effect-directed analysis to explore the polar bear exposome: identification of thyroid hormone disrupting compounds in plasma. <i>Environmental Science & Environmental & Enviro</i>	10.3	68
176	Characterization of polychlorinated n-alkanes using comprehensive two-dimensional gas chromatographyelectron-capture negative ionisation time-of-flight mass spectrometry. <i>Journal of Chromatography A</i> , 2005 , 1086, 71-82	4.5	68
175	Accumulation of metals, polycyclic (halogenated) aromatic hydrocarbons, and biocides in zebra mussel and eel from the rhine and meuse rivers. <i>Environmental Toxicology and Chemistry</i> , 1998 , 17, 1885	31898	67
174	The PFOA substitute GenX detected in the environment near a fluoropolymer manufacturing plant in the Netherlands. <i>Chemosphere</i> , 2019 , 220, 493-500	8.4	67
173	Brominated flame retardants and endocrine disruption. <i>Pure and Applied Chemistry</i> , 2003 , 75, 2039-2046	2.1	66
172	Attempt to unravel the composition of toxaphene by comprehensive two-dimensional gas chromatography with selective detection. <i>Journal of Chromatography A</i> , 2003 , 994, 179-89	4.5	65

171	Organic contaminants and trace metals in flounder liver and sediment from the Amsterdam and Rotterdam harbours and off the Dutch coast. <i>Journal of Environmental Monitoring</i> , 2001 , 3, 386-93		64
170	Dust measurement of two organophosphorus flame retardants, resorcinol bis(diphenylphosphate) (RBDPP) and bisphenol A bis(diphenylphosphate) (BPA-BDPP), used as alternatives for BDE-209. Environmental Science & Environmental Science & Environment	10.3	63
169	Thirty year monitoring of PCBs, organochlorine pesticides and tetrabromodiphenylether in eel from The Netherlands. <i>Environmental Pollution</i> , 2010 , 158, 1228-36	9.3	63
168	Determination of chlorobiphenyls in sediments hanalytical methods. <i>TrAC - Trends in Analytical Chemistry</i> , 1997 , 16, 503-517	14.6	63
167	Contaminants of emerging concern in the Hartbeespoort Dam catchment and the uMngeni River estuary 2016 pollution incident, South Africa. <i>Science of the Total Environment</i> , 2018 , 627, 1008-1017	10.2	62
166	An 8-Year Study on the Elimination of PCBs and Other Organochlorine Compounds from Eel (Anguilla anguilla) under Natural Conditions. <i>Environmental Science & Environmental Sc</i>	10.3	62
165	Changes in Neurotransmitter Profiles during Early Zebrafish (Danio rerio) Development and after Pesticide Exposure. <i>Environmental Science & Environmental Science & Environme</i>	10.3	61
164	In-house validation of a liquid chromatography tandem mass spectrometry method for the analysis of lipophilic marine toxins in shellfish using matrix-matched calibration. <i>Analytical and Bioanalytical Chemistry</i> , 2010 , 397, 3079-88	4.4	60
163	Identification strategy for unknown pollutants using high-resolution mass spectrometry: androgen-disrupting compounds identified through effect-directed analysis. <i>Analytical and Bioanalytical Chemistry</i> , 2011 , 400, 3141-9	4.4	59
162	Identification of hydroxylated metabolites of hexabromocyclododecane in wildlife and 28-days exposed Wistar rats. <i>Environmental Science & Environmental Science & Environment</i>	10.3	58
161	Comprehensive two-dimensional gas chromatography of polybrominated diphenyl ethers. <i>Journal of Chromatography A</i> , 2005 , 1100, 200-7	4.5	57
160	Enantiomer fractions instead of enantiomer ratios. <i>Chemosphere</i> , 2000 , 41, 725-7	8.4	56
159	Simultaneous analysis of multiple neurotransmitters by hydrophilic interaction liquid chromatography coupled to tandem mass spectrometry. <i>Journal of Chromatography A</i> , 2015 , 1395, 79-8	1 .5	55
158	Polybrominated Biphenyls and Diphenylethers 2000 , 61-96		55
157	Quadrupole mass spectrometer operating in the electron-capture negative ion mode as detector for comprehensive two-dimensional gas chromatography. <i>Journal of Chromatography A</i> , 2005 , 1067, 255-64	4.5	54
156	Medium-Chain Chlorinated Paraffins (CPs) Dominate in Australian Sewage Sludge. <i>Environmental Science & Environmental </i>	10.3	53
155	Improvements in the analysis of chlorobiphenyls prior to the certification of seven CBs in two fish oils. <i>Fresenius Zeitschrift Fil Analytische Chemie</i> , 1988 , 332, 591-597		53
154	Trends in chlorobiphenyl contents in livers of Atlantic cod (Gadus morhua) from the North Sea, 1979¶987. <i>Chemosphere</i> , 1988 , 17, 1811-1819	8.4	53

153	Analysis of perfluorinated phosponic acids and perfluorooctane sulfonic acid in water, sludge and sediment by LC-MS/MS. <i>Talanta</i> , 2011 , 86, 329-36	6.2	51
152	Novel analytical methods for flame retardants and plasticizers based on gas chromatography, comprehensive two-dimensional gas chromatography, and direct probe coupled to atmospheric pressure chemical ionization-high resolution time-of-flight-mass spectrometry. <i>Analytical Chemistry</i>	7.8	50
151	Blood plasma sample preparation method for the assessment of thyroid hormone-disrupting potency in effect-directed analysis. <i>Environmental Science & Environmental Science & </i>	10.3	49
150	Determination of toxaphene in human milk from Nicaragua and in fish and marine mammals from the northeastern Atlantic and the North Sea. <i>Chemosphere</i> , 1993 , 27, 1879-1890	8.4	49
149	Methods for the determination of phenolic brominated flame retardants, and by-products, formulation intermediates and decomposition products of brominated flame retardants in water. Journal of Chromatography A, 2009 , 1216, 334-45	4.5	47
148	Separation of seventeen 2,3,7,8-substituted polychlorinated dibenzo-p-dioxins and dibenzofurans and 12 dioxin-like polychlorinated biphenyls by comprehensive two-dimensional gas chromatography with electron-capture detection. <i>Journal of Chromatography A</i> , 2004 , 1038, 189-99	4.5	47
147	Enantiomeric separation of chiral polychlorinated biphenyls on beta-cyclodextrin capillary columns by means of heart-cut multidimensional gas chromatography and comprehensive two-dimensional gas chromatography. Application to food samples. <i>Journal of Separation Science</i> , 2005 , 28, 163-71	3.4	47
146	Maximizing chromatographic information from environmental extracts by GCxGC-ToF-MS. <i>Environmental Science & Environmental & E</i>	10.3	46
145	Dietary exposure of rainbow trout to 8:2 and 10:2 fluorotelomer alcohols and perfluorooctanesulfonamide: Uptake, transformation and elimination. <i>Chemosphere</i> , 2011 , 82, 253-8	8.4	43
144	Comprehensive Two-Dimensional Gas Chromatography with a Rotating Thermal Desorption Modulator and Independently Temperature-Programmable Columns. <i>Journal of High Resolution Chromatography</i> , 2000 , 23, 189-196		43
143	Increased Signal Amplitude due to Mass Conservation in a Thermal Desorption Modulator. <i>Journal of High Resolution Chromatography</i> , 1998 , 21, 411-413		42
142	Analysis of seven chlorobiphenyl congeners by multidimensional gas chromatography. <i>Journal of High Resolution Chromatography</i> , 1991 , 14, 593-596		42
141	A novel brominated triazine-based flame retardant (TTBP-TAZ) in plastic consumer products and indoor dust. <i>Environmental Science & Environmental Scie</i>	10.3	41
140	Analysis of two alternative organophosphorus flame retardants in electronic and plastic consumer products: resorcinol bis-(diphenylphosphate) (PBDPP) and bisphenol A bis (diphenylphosphate) (BPA-BDPP). <i>Chemosphere</i> , 2014 , 116, 10-4	8.4	41
139	Optimization and development of analytical methods for the determination of new brominated flame retardants and polybrominated diphenyl ethers in sediments and suspended particulate matter. <i>Analytical and Bioanalytical Chemistry</i> , 2011 , 400, 871-83	4.4	41
138	Capillary gas chromatography for the determination of halogenated micro-contaminants. <i>Journal of Chromatography A</i> , 1999 , 843, 179-198	4.5	41
137	Interferences in the Determination of 2,4,5,2?,5?-Pentachlorobiphenyl (CB 101) in Environmental and Technical Samples. <i>International Journal of Environmental Analytical Chemistry</i> , 1991 , 43, 245-251	1.8	41
136	Critical review of the analysis of brominated flame retardants and their environmental levels in Africa. <i>Chemosphere</i> , 2016 , 164, 174-189	8.4	41

135	Flame retardants: Dust - And not food - Might be the risk. <i>Chemosphere</i> , 2016 , 150, 461-464	8.4	40
134	Polycyclic aromatic hydrocarbons in soils from the Central-Himalaya region: Distribution, sources, and risks to humans and wildlife. <i>Science of the Total Environment</i> , 2016 , 556, 12-22	10.2	40
133	Development of a thermal desorption modulator for gas chromatography. <i>Journal of Chromatography A</i> , 1997 , 767, 137-151	4.5	40
132	GC x GC-ECD: a promising method for the determination of dioxins and dioxin-like PCBs in food and feed. <i>Analytical and Bioanalytical Chemistry</i> , 2008 , 390, 1815-27	4.4	40
131	Spatial differences and temporal trends of chlorobiphenyls in yellow eel (Anguilla anguilla) from inland waters of the Netherlands. <i>Science of the Total Environment</i> , 1994 , 141, 155-174	10.2	40
130	Method for the analysis of non-ortho substituted chlorobiphenyls in fish and marine mammals. <i>Chemosphere</i> , 1992 , 25, 1277-1283	8.4	40
129	Challenges in effect-directed analysis with a focus on biological samples. <i>TrAC - Trends in Analytical Chemistry</i> , 2015 , 67, 179-191	14.6	39
128	Multidimensional Gas Chromatographic Analysis of Toxaphene. <i>Environmental Science & Environmental Sci</i>	10.3	39
127	Polychlorinated dibenzo-p-dioxins, dibenzofurans and biphenyls in fish from the Netherlands: concentrations, profiles and comparison with DR CALUX bioassay results. <i>Analytical and Bioanalytical Chemistry</i> , 2007 , 389, 321-33	4.4	38
126	Toward fire safety without chemical risk. <i>Science</i> , 2019 , 364, 231-232	33.3	38
125	Chlorinated Paraffins in Car Tires Recycled to Rubber Granulates and Playground Tiles. <i>Environmental Science & Environmental </i>	10.3	37
124	Non-target analysis of household dust and laundry dryer lint using comprehensive two-dimensional liquid chromatography coupled with time-of-flight mass spectrometry. <i>Chemosphere</i> , 2017 , 166, 431-43	/ 8.4	37
123	Determination of Polychlorinated Terphenyls in Aquatic Biota and Sediment with Gas Chromatography/Mass Spectrometry Using Negative Chemical Ionization. <i>Environmental Science & Environmental Science</i>	10.3	36
122	Supercritical fluid extraction of polychlorinated biphenyls from lyophilized fish tissue. <i>Journal of Chromatography A</i> , 1994 , 675, 189-204	4.5	36
121	Dithiocarbamates induce craniofacial abnormalities and downregulate sox9a during zebrafish development. <i>Toxicological Sciences</i> , 2010 , 117, 209-17	4.4	35
121	development. <i>Toxicological Sciences</i> , 2010 , 117, 209-17 Comprehensive two-dimensional gas chromatography for the analysis of organobalogenated	4·4 14.6	35
	development. <i>Toxicological Sciences</i> , 2010 , 117, 209-17 Comprehensive two-dimensional gas chromatography for the analysis of organohalogenated micro-contaminants. <i>TrAC - Trends in Analytical Chemistry</i> , 2006 , 25, 373-396 Novel brominated flame retardants - A review of their occurrence in indoor air, dust, consumer		

117	Polybrominated diphenyl ether contamination levels in fish from the Antarctic and the Mediterranean Sea. <i>Chemosphere</i> , 2009 , 77, 693-8	33
116	Organochlorines in Greenland ringed seals (Phoca hispida). <i>Science of the Total Environment</i> , 2000 , 245, 103-16	33
115	Determination of mono-ortho substituted chlorobiphenyls by multidimensional gas chromatography and their contribution to TCDD equivalents. <i>Analytica Chimica Acta</i> , 1995 , 300, 155-165 ^{6.6}	33
114	Chlorobiphenyls and organochlorine pesticides in various sub-Antarctic organisms. <i>Marine Pollution Bulletin</i> , 1991 , 22, 441-447	33
113	High-Throughput Effect-Directed Analysis Using Downscaled in Vitro Reporter Gene Assays To Identify Endocrine Disruptors in Surface Water. <i>Environmental Science & Environmental Science & Environmen</i>	7 32
112	Impurities of Resorcinol Bis(diphenyl phosphate) in Plastics and Dust Collected on Electric/Electronic Material. <i>Environmental Science & Electric (Science & Electric</i>	32
111	Comprehensive two-dimensional liquid chromatography coupled to high resolution time of flight mass spectrometry for chemical characterization of sewage treatment plant effluents. <i>Journal of Chromatography A</i> , 2015 , 1380, 139-45	32
110	Identification of mutagenic and endocrine disrupting compounds in surface water and wastewater treatment plant effluents using high-resolution effect-directed analysis. <i>Water Research</i> , 2020 , 168, 115204	32
109	The Stockholm Convention: A Tool for the Global Regulation of Persistent Organic Pollutants. Chemistry International, 2019, 41, 4-11	31
108	The international validation of bio- and chemical-analytical screening methods for dioxins and dioxin-like PCBs: the DIFFERENCE project rounds 1 and 2. <i>Talanta</i> , 2004 , 63, 1169-82	31
107	Polycyclic Aromatic Hydrocarbons in Soil Practical Options for Remediation. <i>Clean - Soil, Air, Water</i> , 2016 , 44, 648-653	31
106	Regional and inter annual patterns of heavy metals, organochlorines and stable isotopes in narwhals (Monodon monoceros) from West Greenland. <i>Science of the Total Environment</i> , 2004 , 331, 83-105.2	30
105	Contribution of planar (0-1 ortho) and nonplanar (2-4 ortho) fractions of Aroclor 1260 to the induction of altered hepatic foci in female Sprague-Dawley rats. <i>Toxicology and Applied</i> 4.6 Pharmacology, 2000 , 169, 255-68	30
104	Rapid Screening of Acetylcholinesterase Inhibitors by Effect-Directed Analysis Using LC ILC Fractionation, a High Throughput in Vitro Assay, and Parallel Identification by Time of Flight Mass 7.8 Spectrometry. <i>Analytical Chemistry</i> , 2016 , 88, 2353-60	29
103	Import, disposal, and health impacts of pesticides in the East Africa Rift(EAR) zone: A review on management and policy analysis. <i>Crop Protection</i> , 2018 , 112, 322-331	29
102	Effects of environmentally relevant sub-chronic atrazine concentrations on African clawed frog (Xenopus laevis) survival, growth and male gonad development. <i>Aquatic Toxicology</i> , 2018 , 199, 1-11	28
101	Direct probe atmospheric pressure photoionization/atmospheric pressure chemical ionization high-resolution mass spectrometry for fast screening of flame retardants and plasticizers in products and waste. <i>Analytical and Bioanalytical Chemistry</i> , 2014 , 406, 2503-12	28
100	Decabromodiphenylether and hexabromocyclododecane in wild birds from the United Kingdom, Sweden and The Netherlands: Screening and time trends. <i>Chemosphere</i> , 2011 , 82, 88-95	28

(2004-2000)

Organochlorines in Greenland lake sediments and landlocked Arctic char (Salvelinus alpinus). <i>Science of the Total Environment</i> , 2000 , 245, 173-85	10.2	28
Multidimensionality in gas chromatography. <i>TrAC - Trends in Analytical Chemistry</i> , 1996 , 15, 168-178	14.6	27
Pesticide Mixture Toxicity in Surface Water Extracts in Snails (Lymnaea stagnalis) by an in Vitro Acetylcholinesterase Inhibition Assay and Metabolomics. <i>Environmental Science & Environmental Scien</i>	10.3	26
Metabolomics to Explore Imidacloprid-Induced Toxicity in the Central Nervous System of the Freshwater Snail Lymnaea stagnalis. <i>Environmental Science & Environmental Science </i>	10.3	26
Determination of Enantiomer Ratios of Bornane Congeners in Biological Samples Using Heart-Cut Multidimensional Gas Chromatography. <i>Journal of High Resolution Chromatography</i> , 1998 , 21, 39-46		26
Determination of tris(4-chlorophenyl)methanol and tris(4-chlorophenyl)methane in fish, marine mammals and sediment. <i>Environmental Pollution</i> , 1996 , 93, 39-47	9.3	26
Seasonal variation of chloro-s-triazines in the Hartbeespoort Dam catchment, South Africa. <i>Science of the Total Environment</i> , 2018 , 613-614, 472-482	10.2	25
Assessment of ionic liquid stationary phases for the determination of polychlorinated biphenyls, organochlorine pesticides and polybrominated diphenyl ethers. <i>Journal of Chromatography A</i> , 2014 , 1348, 158-63	4.5	25
Trace elements and carbon and nitrogen stable isotopes in organisms from a tropical coastal lagoon. <i>Archives of Environmental Contamination and Toxicology</i> , 2010 , 59, 464-77	3.2	25
Chlorobiphenyls and organochlorine pesticides in fish and sediments-three years of QUASIMEME laboratory performance studies. <i>Marine Pollution Bulletin</i> , 1997 , 35, 52-63	6.7	25
New certified and candidate certified reference materials for the analysis of PCBs, PCDD/Fs, OCPs and BFRs in the environment and food. <i>TrAC - Trends in Analytical Chemistry</i> , 2006 , 25, 397-409	14.6	25
Tricresyl phosphate and the aerotoxic syndrome of flight crew memberscurrent gaps in knowledge. <i>Chemosphere</i> , 2015 , 119 Suppl, S58-61	8.4	22
Analytical improvements shown over four interlaboratory studies of perfluoroalkyl substances in environmental and food samples. <i>TrAC - Trends in Analytical Chemistry</i> , 2013 , 43, 204-216	14.6	22
Testing endocrine disruption in biota samples: a method to remove interfering lipids and natural hormones. <i>Environmental Science & Environmental Scie</i>	10.3	22
A review of the achievements of the EU project QUASIMEMEII 993II 996. <i>Marine Pollution Bulletin</i> , 1997 , 35, 3-17	6.7	22
The 1993 QUASIMEME laboratory-performance study: Chlorobiphenyls in fish oil and standard solutions. <i>Marine Pollution Bulletin</i> , 1994 , 29, 174-184	6.7	22
Brominated and organophosphorus flame retardants in South African indoor dust and cat hair. <i>Environmental Pollution</i> , 2019 , 253, 120-129	9.3	21
Brominated Flame Retardants in the Environment The Price for our Convenience?. <i>Environmental Chemistry</i> , 2004 , 1, 81	3.2	21
	Multidimensionality in gas chromatography. <i>TrAC - Trends in Analytical Chemistry</i> , 1996, 15, 168-178 Pesticide Mixture Toxicity in Surface Water Extracts in Snails (Lymnaea stagnalis) by an in Vitro Acetylcholinesterase Inhibition Assay and Metabolomics. <i>Environmental Science & Designation</i> , 2016, 50, 3937-44 Metabolomics to Explore Imidacloprid-Induced Toxicity in the Central Nervous System of the Freshwater Snail Lymnaea stagnalis. <i>Environmental Science & Designation</i> , 2015, 49, 14529-36 Determination of Enantiomer Ratios of Bornane Congeners in Biological Samples Using Heart-Cut Multidimensional Gas Chromatography. <i>Journal of High Resolution Chromatography</i> , 1998, 21, 39-46 Determination of tris(4-chlorophenyl)methanol and tris(4-chlorophenyl)methane in fish, marine mammals and sediment. <i>Environmental Pollution</i> , 1996, 93, 39-47 Seasonal variation of chloro-s-triazines in the Hartbeespoort Dam catchment, South Africa. <i>Science of the Total Environment</i> , 2018, 613-614, 472-482 Assessment of ionic liquid stationary phases for the determination of polychlorinated biphenyls, organochlorine pesticides and polybrominated diphenyl ethers. <i>Journal of Chromatography A</i> , 2014, 1348, 158-63 Trace elements and carbon and nitrogen stable isotopes in organisms from a tropical coastal lagoon. <i>Archives of Environmental Contamination and Toxicology</i> , 2010, 59, 464-77 Chlorobiphenyls and organochlorine pesticides in fish and sediments-three years of QUASIMEME laboratory performance studies. <i>Marine Pollution Bulletin</i> , 1997, 35, 52-63 New certified and candidate certified reference materials for the analysis of PCBs, PCDD/Fs, OCPs and BFRs in the environment and food. <i>TrAC - Trends in Analytical Chemistry</i> , 2006, 25, 397-409 Tricresyl phosphate and the aerotoxic syndrome of flight crew members-current gaps in knowledge. <i>Chemosphere</i> , 2015, 119 Suppl, 558-61 Analytical improvements shown over four interlaboratory studies of perfluoroallyl substances in environmental and food samples. <i>TrAC - Trends in Analy</i>	Multidimensionality in gas chromatography. <i>TrAC-Trends in Analytical Chemistry</i> , 1996, 15, 168-178 Multidimensionality in gas chromatography. <i>TrAC-Trends in Analytical Chemistry</i> , 1996, 15, 168-178 146 Pesticide Mixture Toxicity in Surface Water Extracts in Snails (Lymnaea stagnalis) by an in Vitro Acetylcholinesterase Inhibition Assay and Metabolomics. <i>Environmental Science & Design Technology</i> , 2016, 50, 3937-44 Metabolomics to Explore Imidacloprid-Induced Toxicity in the Central Nervous System of the Freshwater Snail Lymnaea stagnalis. <i>Environmental Science & Design Technology</i> , 2015, 49, 14529-36 Determination of Enantiomer Ratios of Bornane Congeners in Biological Samples Using Heart-Cut Multidimensional Gas Chromatography. <i>Journal of High Resolution Chromatography</i> , 1998, 21, 39-46 Determination of tris(4-chlorophenyl)methanol and tris(4-chlorophenyl)methane in fish, marine mammals and sediment. <i>Environmental Pollution</i> , 1996, 93, 39-47 Seasonal variation of chloro-s-triazines in the Hartbeespoort Dam catchment, South Africa. <i>Science of the Total Environment</i> , 2018, 613-614, 472-482 Assessment of ionic liquid stationary phases for the determination of polychlorinated biphenyls, organochlorine pesticides and polybrominated diphenyl ethers. <i>Journal of Chromatography A</i> , 2014, 1348, 158-63 Trace elements and carbon and nitrogen stable isotopes in organisms from a tropical coastal lagoon. <i>Archives of Environmental Contamination and Toxicology</i> , 2010, 59, 464-77 Chlorobiphenyls and organochlorine pesticides in fish and sediments-three years of QUASIMEME laboratory performance studies. <i>Marine Pollution Bulletin</i> , 1997, 35, 52-63 New certified and candidate certified reference materials for the analysis of PCBs, PCDD/Fs, OCPs and BFRs in the environment and food. <i>TrAC-Trends in Analytical Chemistry</i> , 2006, 25, 397-409 Tricresyl phosphate and the aerotoxic syndrome of flight crew members-current gaps in knowledge. <i>Chemosphere</i> , 2015, 119 Suppl, S58-61 Analytical improvements shown over fo

81	Environmental Occurrence, Analysis, and Toxicology of Toxaphene Compounds. <i>Environmental Health Perspectives</i> , 1999 , 107, 115	8.4	21
80	The effect of weathering on per- and polyfluoroalkyl substances (PFASs) from durable water repellent (DWR) clothing. <i>Chemosphere</i> , 2020 , 249, 126100	8.4	20
79	Certified reference materials for organic contaminants for use in monitoring of the aquatic environment. <i>TrAC - Trends in Analytical Chemistry</i> , 2001 , 20, 140-159	14.6	20
78	Short-, medium-, and long-chain chlorinated paraffins in South African indoor dust and cat hair. <i>Chemosphere</i> , 2020 , 238, 124643	8.4	20
77	The use of microsomal in vitro assay to study phase I biotransformation of chlorobornanes (Toxaphene) in marine mammals and birds. Possible consequences of biotransformation for bioaccumulation and genotoxicity. Comparative Biochemistry and Physiology C, Comparative		19
76	Pharmacology and Toxicology, 1998, 121, 385-403 Feasibility of gamma irradiation as a stabilisation technique in the preparation of tissue reference materials for a range of shellfish toxins. Analytical and Bioanalytical Chemistry, 2007, 387, 2487-93	4.4	19
75	Determination of Chlorobiphenyls in Seal Blubber, Marine Sediment, and Fish: Interlaboratory Study. <i>Journal of AOAC INTERNATIONAL</i> , 1996 , 79, 83-96	1.7	18
74	Evaluating age and temporal trends of chlorinated paraffins in pooled serum collected from males in Australia between 2004 and 2015. <i>Chemosphere</i> , 2020 , 244, 125574	8.4	18
73	Results for PCDD/PCDF and dl-PCBs in the First Round of UNEPs Biennial Global Interlaboratory Assessment on Persistent Organic Pollutants. <i>TrAC - Trends in Analytical Chemistry</i> , 2013 , 46, 98-109	14.6	17
72	Recent developments in the analysis and environmental chemistry of toxaphene with emphasis on the marine environment. <i>TrAC - Trends in Analytical Chemistry</i> , 1995 , 14, 56-66	14.6	17
71	Spatial and temporal variability in bio-optical properties of the Wadden Sea. <i>Estuarine, Coastal and Shelf Science</i> , 2009 , 83, 360-370	2.9	16
70	United Nations Environment Programme Capacity Building Pilot Projecttraining and interlaboratory study on persistent organic pollutant analysis under the Stockholm Convention. <i>Analytica Chimica Acta</i> , 2008 , 617, 208-15	6.6	16
69	Isolation and identification of tetrabromobisphenol-S-bis-(2,3-dibromopropyl ether) as flame retardant in polypropylene. <i>Chemosphere</i> , 1999 , 39, 1523-1532	8.4	16
68	Miniaturization of a transthyretin binding assay using a fluorescent probe for high throughput screening of thyroid hormone disruption in environmental samples. <i>Chemosphere</i> , 2017 , 171, 722-728	8.4	15
67	Review of the analysis of insecticide residues and their levels in different matrices in Ghana. <i>Ecotoxicology and Environmental Safety</i> , 2019 , 171, 361-372	7	15
66	Source characterisation and distribution of selected PCBs, PAHs and alkyl PAHs in sediments from the Klip and Jukskei Rivers, South Africa. <i>Environmental Monitoring and Assessment</i> , 2017 , 189, 327	3.1	14
65	Spatial variation of short- and medium-chain chlorinated paraffins in ambient air across Australia. <i>Environmental Pollution</i> , 2020 , 261, 114141	9.3	14
64	Identification and quantification of methylated PAHs in sediment by two-dimensional gas chromatography/mass spectrometry. <i>Analytical Methods</i> , 2013 , 5, 213-218	3.2	14

(2016-2013)

63	First worldwide UNEP interlaboratory study on persistent organic pollutants (POPs), with data on polychlorinated biphenyls and organochlorine pesticides. <i>TrAC - Trends in Analytical Chemistry</i> , 2013 , 46, 110-117	14.6	14	
62	Comparison of quantification methods for the analysis of polychlorinated alkanes using electron capture negative ionisation mass spectrometry. <i>International Journal of Environmental Analytical Chemistry</i> , 2011 , 91, 319-332	1.8	14	
61	Simple nomenclature for chlorinated bornenes, bornenes and bornadienes from which structural information can be directly deduced. <i>Chemosphere</i> , 1997 , 35, 1187-1194	8.4	14	
60	Development and validation of a method for the quantification of extractable perfluoroalkyl acids (PFAAs) and perfluorooctane sulfonamide (FOSA) in textiles. <i>Talanta</i> , 2016 , 147, 8-15	6.2	13	
59	Toxaphene: a challenging analytical problem. Journal of Environmental Monitoring, 2000, 2, 503-11		13	
58	The use of fish as biomonitors for the determination of contamination of the aquatic environment by persistent organochlorine compounds. <i>TrAC - Trends in Analytical Chemistry</i> , 1994 , 13, 397-404	14.6	13	
57	Toxaphene: Analytical chemistry. <i>Chemosphere</i> , 1993 , 27, 1827-1834	8.4	13	
56	Cross-platform metabolic profiling: application to the aquatic model organism Lymnaea stagnalis. <i>Analytical and Bioanalytical Chemistry</i> , 2015 , 407, 1901-12	4.4	12	
55	Determination of ultra-trace levels of priority PBDEs in water samples by isotope dilution GC(ECNI)MS using 81Br-labelled standards. <i>Analytical and Bioanalytical Chemistry</i> , 2011 , 401, 2639-49	4.4	12	
54	Effects of storage conditions of biological materials on the contents of organochlorine compounds and mercury. <i>Marine Pollution Bulletin</i> , 1997 , 35, 93-108	6.7	12	
53	Mass spectrometric analysis of the marine lipophilic biotoxins pectenotoxin-2 and okadaic acid by four different types of mass spectrometers. <i>Journal of Mass Spectrometry</i> , 2008 , 43, 1140-7	2.2	12	
52	Evaluation of the quality of measurement of organochlorine contaminants in the marine environment: the QUASIMEME1 experience. <i>TrAC - Trends in Analytical Chemistry</i> , 2006 , 25, 350-363	14.6	12	
51	The 1994 QUASIMEME laboratory-performance studies: Chlorobiphenyls and organochlorine pesticides in fish and sediment. <i>Marine Pollution Bulletin</i> , 1996 , 32, 654-666	6.7	12	
50	Determination of monoamine neurotransmitters in zebrafish (Danio rerio) by gas chromatography coupled to mass spectrometry with a two-step derivatization. <i>Analytical and Bioanalytical Chemistry</i> , 2017 , 409, 2931-2939	4.4	11	
49	Screening of additives in plastics with high resolution time-of-flight mass spectrometry and different ionization sources: direct probe injection (DIP)-APCI, LC-APCI, and LC-ion booster ESI. <i>Analytical and Bioanalytical Chemistry</i> , 2016 , 408, 2945-53	4.4	11	
48	Simple nomenclature for chlorinated camphenes and dihydrocamphenes from which structural information can be directly deduced. <i>Chemosphere</i> , 1997 , 35, 2857-2864	8.4	11	
47	TCDD equivalents of mono-ortho substituted chlorobiphenyls. Influence of analytical error and uncertainty of toxic equivalency factors. <i>Analytica Chimica Acta</i> , 1994 , 289, 261-262	6.6	11	
46	Distribution of 2,3,7,8-substituted polychlorinated dibenzo-p-dioxin and polychlorinated dibenzofurans in the Jukskei and Klip/Vaal catchment areas in South Africa. <i>Chemosphere</i> , 2016 , 145, 314-21	8.4	10	

45	Exploring methods for compositional and particle size analysis of noble metal nanoparticles in Daphnia magna. <i>Talanta</i> , 2016 , 147, 289-95	6.2	10
44	PCB and organochlorine pesticide concentrations in eel increase after frying. <i>Chemosphere</i> , 2013 , 90, 139-42	8.4	10
43	Improved androgen specificity of AR-EcoScreen by CRISPR based glucocorticoid receptor knockout. <i>Toxicology in Vitro</i> , 2017 , 45, 1-9	3.6	10
42	Toxicological risks to humans of toxaphene residues in fish. <i>Integrated Environmental Assessment and Management</i> , 2012 , 8, 523-9	2.5	10
41	POPs analysis reveals issues in bringing laboratories in developing countries to a higher quality level. <i>TrAC - Trends in Analytical Chemistry</i> , 2013 , 46, 198-206	14.6	10
40	Spectra of a shallow sealinmixing for class identification and monitoring of coastal waters. <i>Ocean Dynamics</i> , 2011 , 61, 463-480	2.3	10
39	The preparation of biological reference materials for use in inter-laboratory studies on the analysis of chlorobiphenyls, organochlorine pesticides and trace metals. <i>Marine Pollution Bulletin</i> , 1997 , 35, 84-9	92 ^{6.7}	10
38	Hazardous compounds in recreational and urban recycled surfaces made from crumb rubber. Compliance with current regulation and future perspectives. <i>Science of the Total Environment</i> , 2021 , 755, 142566	10.2	10
37	A review of bottom-up and top-down emission estimates of hydrofluorocarbons (HFCs) in different parts of the world. <i>Chemosphere</i> , 2021 , 283, 131208	8.4	10
36	Comprehensive two-dimensional gas chromatography coupled to high resolution time-of-flight mass spectrometry for screening of organohalogenated compounds in cat hair. <i>Journal of Chromatography A</i> , 2018 , 1536, 151-162	4.5	9
35	Serum levels of decabromodiphenyl ether (BDE-209) in women from different European countries and possible relationships with lifestyle and diet. <i>Environment International</i> , 2017 , 107, 16-24	12.9	9
34	Analysis of recycled rubber: Development of an analytical method and determination of polycyclic aromatic hydrocarbons and heterocyclic aromatic compounds in rubber matrices. <i>Chemosphere</i> , 2021 , 276, 130076	8.4	9
33	The underlying challenges that arise when analysing short-chain chlorinated paraffins in environmental matrices. <i>Journal of Chromatography A</i> , 2020 , 1610, 460550	4.5	8
32	A review on substances and processes relevant for optical remote sensing of extremely turbid marine areas, with a focus on the Wadden Sea. <i>Helgoland Marine Research</i> , 2010 , 64, 75-92	1.8	7
31	The European Long-range Research Initiative (LRI): A decade of contributions to human health protection, exposure modelling and environmental integrity. <i>Toxicology</i> , 2015 , 337, 83-90	4.4	6
30	Development of a luminescent mutagenicity test for high-throughput screening of aquatic samples. <i>Toxicology in Vitro</i> , 2018 , 46, 350-360	3.6	6
29	Persistent Organic Pollutants [Are Our Methods Sensitive and Selective Enough?. <i>Analytical Letters</i> , 2012 , 45, 485-494	2.2	6
28	Evaluation of tumour promoting potency of fish borne toxaphene residues, as compared to technical toxaphene and UV-irradiated toxaphene. <i>Food and Chemical Toxicology</i> , 2008 , 46, 2629-38	4.7	6

(2021-2003)

27	Preliminary study on the occurrence of brominated organic compounds in Dutch marine organisms. <i>New Biotechnology</i> , 2003 , 20, 425-7		6
26	Toxaphene in standard solutions and cleaned biota extractsresults of the first QUASIMEME interlaboratory studies. Quality Assurance of Information for Marine Environmental Monitoring in Europe. <i>Chemosphere</i> , 2000 , 41, 493-7	8.4	6
25	Heptachlor epoxide in marine mammals. Science of the Total Environment, 1981, 19, 41-50	10.2	6
24	Baseline survey of concentrations of toxaphene congeners in fish from European waters. <i>Journal of Environmental Monitoring</i> , 2004 , 6, 665-72		5
23	Accumulation of metals, polycyclic (halogenated) aromatic hydrocarbons, and biocides in zebra mussel and eel from the rhine and meuse rivers 1998 , 17, 1885		5
22	Chlorinated paraffins and tris (1-chloro-2-propyl) phosphate in spray polyurethane foams - A source for indoor exposure?. <i>Journal of Hazardous Materials</i> , 2021 , 416, 125758	12.8	5
21	Retention Behaviour of Alkylated and Non-Alkylated Polycyclic Aromatic Hydrocarbons on Different Types of Stationary Phases in Gas Chromatography. <i>Separations</i> , 2019 , 6, 7	3.1	4
20	Identification of chlordane compounds in harbour seals from the coastal waters of the Netherlands. <i>Chemosphere</i> , 1982 , 11, 841-845	8.4	4
19	Global evaluation of the chemical hazard of recycled tire crumb rubber employed on worldwide synthetic turf football pitches <i>Science of the Total Environment</i> , 2021 , 812, 152542	10.2	4
18	Pesticide residue levels in vegetables and surface waters at the Central Rift Valley (CRV) of Ethiopia. <i>Environmental Monitoring and Assessment</i> , 2020 , 192, 546	3.1	4
17	Polychlorinated Terphenyls 2000 , 43-59		4
16	Capacity building for persistent organic pollutant (POP) analysis in the Pacific and POP trends in the Pacific Islands. <i>TrAC - Trends in Analytical Chemistry</i> , 2013 , 46, 173-177	14.6	3
15	Bioaccumulation of Brominated Flame Retardants. Handbook of Environmental Chemistry, 2010, 141-18	5 0.8	3
14	Evaluation of chemicals of environmental concern in crumb rubber and water leachates from several types of synthetic turf football pitches. <i>Chemosphere</i> , 2021 , 270, 128610	8.4	3
13	Tris(4-Chlorophenyl)Methanol and Tris(4-Chlorophenyl)Methane 2000, 31-41		3
12	Chi-square spectral fitting for concentration retrieval, automatic local calibration, quality control, and water type detection. <i>Canadian Journal of Remote Sensing</i> , 2010 , 36, 650-670	1.8	2
11	Global interlaboratory assessments on PCBs, organochlorine pesticides and brominated flame retardants in various environmental matrices 2017/2019 <i>Chemosphere</i> , 2022 , 295, 133991	8.4	2
10	Assessment of four rounds of interlaboratory tests within the UNEP-coordinated POPs projects. <i>Chemosphere</i> , 2021 , 288, 132441	8.4	2

9	Interlaboratory assessments for dioxin-like POPs (2016/2017 and 2018/2019). <i>Chemosphere</i> , 2022 , 288, 132449	8.4	2	
8	Assess flame retardants with care-Response. <i>Science</i> , 2019 , 365, 993	33.3	1	
7	Response to Comment on Halogenated Contaminants in Farmed Salmon, Trout, Tilapia, Pangasius, and Shrimp[]Environmental Science & Technology, 2009, 43, 7586-7587	10.3	1	
6	Chapter 7 Polychlorinated biphenyls. <i>Handbook of Analytical Separations</i> , 2001 , 3, 237-262	0.7	1	
5	Decabromodiphenylether trends in the European environment: Bird eggs, sewage sludge and surficial sediments. <i>Science of the Total Environment</i> , 2021 , 774, 145174	10.2	1	
4	Letter to the Editor of Risk Analysis on the de Vries etlal. Article (2021) on the Role of the Media in Communicating About Risks Linked to Crumb Rubber <i>Risk Analysis</i> , 2021 , 41, 2179-2182	3.9	О	
3	Organic Micropollutants. Water Quality Measurements Series, 2012, 161-196			
2	Comparative Tests To Improve the Gas Chromatographic Analysis of Chlorobornanes in Fish Samples. <i>Journal of AOAC INTERNATIONAL</i> , 2003 , 86, 432-438	1.7		
1	Brominated Flame Retardants in the Environment. <i>NATO Science for Peace and Security Series C:</i> Environmental Security, 2009 , 3-14	0.3		