Henry Daniell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9328872/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 19369-19374.	7.1	1,016
2	Chloroplast genomes: diversity, evolution, and applications in genetic engineering. Genome Biology, 2016, 17, 134.	8.8	1,013
3	Medical molecular farming: production of antibodies, biopharmaceuticals and edible vaccines in plants. Trends in Plant Science, 2001, 6, 219-226.	8.8	689
4	Overexpression of the Bt cry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals. Nature Biotechnology, 2001, 19, 71-74.	17.5	542
5	Molecular strategies for gene containment in transgenic crops. Nature Biotechnology, 2002, 20, 581-586.	17.5	451
6	Containment of herbicide resistance through genetic engineering of the chloroplast genome. Nature Biotechnology, 1998, 16, 345-348.	17.5	400
7	Expression of the native cholera toxin B subunit gene and assembly as functional oligomers in transgenic tobacco chloroplasts11Edited by NH. Chua. Journal of Molecular Biology, 2001, 311, 1001-1009.	4.2	384
8	Plant-made vaccine antigens and biopharmaceuticals. Trends in Plant Science, 2009, 14, 669-679.	8.8	359
9	Plastid-Expressed Betaine Aldehyde Dehydrogenase Gene in Carrot Cultured Cells, Roots, and Leaves Confers Enhanced Salt Tolerance. Plant Physiology, 2004, 136, 2843-2854.	4.8	356
10	Milestones in chloroplast genetic engineering: an environmentally friendly era in biotechnology. Trends in Plant Science, 2002, 7, 84-91.	8.8	339
11	Particle bombardment and the genetic enhancement of crops: myths and realities. Molecular Breeding, 2005, 15, 305-327.	2.1	291
12	Overexpression of the Bacillus thuringiensis (Bt) Cry2Aa2 protein in chloroplasts confers resistance to plants against susceptible and Bt-resistant insects. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 1840-1845.	7.1	290
13	Expression of an Antimicrobial Peptide via the Chloroplast Genome to Control Phytopathogenic Bacteria and Fungi. Plant Physiology, 2001, 127, 852-862.	4.8	280
14	Complete Chloroplast Genome Sequence of Glycine max and Comparative Analyses with other Legume Genomes. Plant Molecular Biology, 2005, 59, 309-322.	3.9	255
15	Chloroplast Vector Systems for Biotechnology Applications. Plant Physiology, 2007, 145, 1129-1143.	4.8	243
16	Phylogenetic analyses of Vitis (Vitaceae) based on complete chloroplast genome sequences: effects of taxon sampling and phylogenetic methods on resolving relationships among rosids. BMC Evolutionary Biology, 2006, 6, 32.	3.2	230
17	Phytoremediation of Organomercurial Compounds via Chloroplast Genetic Engineering. Plant Physiology, 2003, 132, 1344-1352.	4.8	223
18	Expression of cholera toxin B?proinsulin fusion protein in lettuce and tobacco chloroplasts ? oral administration protects against development of insulitis in non-obese diabetic mice. Plant Biotechnology Journal, 2007, 5, 495-510.	8.3	214

#	Article	IF	CITATIONS
19	Complete plastid genome sequence of the chickpea (Cicer arietinum) and the phylogenetic distribution of rps12 and clpP intron losses among legumes (Leguminosae). Molecular Phylogenetics and Evolution, 2008, 48, 1204-1217.	2.7	214
20	The Role of Heterologous Chloroplast Sequence Elements in Transgene Integration and Expression. Plant Physiology, 2010, 152, 2088-2104.	4.8	212
21	Breakthrough in chloroplast genetic engineering of agronomically important crops. Trends in Biotechnology, 2005, 23, 238-245.	9.3	211
22	Complete Plastid Genome Sequences of Three Rosids (Castanea, Prunus, Theobroma): Evidence for At Least Two Independent Transfers of rpl22 to the Nucleus. Molecular Biology and Evolution, 2011, 28, 835-847.	8.9	203
23	High efficient multisites genome editing in allotetraploid cotton (<i>Gossypium hirsutum</i>) using CRISPR/Cas9 system. Plant Biotechnology Journal, 2018, 16, 137-150.	8.3	202
24	Accumulation of trehalose within transgenic chloroplasts confers drought tolerance. Molecular Breeding, 2003, 11, 1-13.	2.1	197
25	Stable transformation of the cotton plastid genome and maternal inheritance of transgenes. Plant Molecular Biology, 2004, 56, 203-216.	3.9	197
26	The complete chloroplast genome sequence of Citrus sinensis (L.) Osbeck var 'Ridge Pineapple': organization and phylogenetic relationships to other angiosperms. BMC Plant Biology, 2006, 6, 21.	3.6	194
27	Complete chloroplast genome sequences of Hordeum vulgare, Sorghum bicolor and Agrostis stolonifera, and comparative analyses with other grass genomes. Theoretical and Applied Genetics, 2007, 115, 571-590.	3.6	194
28	Plant-Based Vaccine: Mice Immunized with Chloroplast-Derived Anthrax Protective Antigen Survive Anthrax Lethal Toxin Challenge. Infection and Immunity, 2005, 73, 8266-8274.	2.2	193
29	A chloroplast transgenic approach to hyper-express and purify Human Serum Albumin, a protein highly susceptible to proteolytic degradation. Plant Biotechnology Journal, 2003, 1, 71-79.	8.3	187
30	Enhanced translation of a chloroplast-expressed RbcS gene restores small subunit levels and photosynthesis in nuclear RbcS antisense plants. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 6315-6320.	7.1	180
31	Marker free transgenic plants: engineering the chloroplast genome without the use of antibiotic selection. Current Genetics, 2001, 39, 109-116.	1.7	172
32	Production of biopharmaceuticals and vaccines in plants via the chloroplast genome. Biotechnology Journal, 2006, 1, 1071-1079.	3.5	163
33	Complete chloroplast genome of Oncidium Gower Ramsey and evaluation of molecular markers for identification and breeding in Oncidiinae. BMC Plant Biology, 2010, 10, 68.	3.6	161
34	Whole genome sequencing reveals rare offâ€ŧarget mutations and considerable inherent genetic or/and somaclonal variations in <scp>CRISPR</scp> /Cas9â€edited cotton plants. Plant Biotechnology Journal, 2019, 17, 858-868.	8.3	159
35	Engineering Cytoplasmic Male Sterility via the Chloroplast Genome by Expression of β-Ketothiolase. Plant Physiology, 2005, 138, 1232-1246.	4.8	157
36	Complete chloroplast genome sequences of Solanum bulbocastanum, Solanum lycopersicum and comparative analyses with other Solanaceae genomes. Theoretical and Applied Genetics, 2006, 112, 1503-1518.	3.6	157

#	Article	IF	CITATIONS
37	Chloroplastâ€derived vaccine antigens confer dual immunity against cholera and malaria by oral or injectable delivery. Plant Biotechnology Journal, 2010, 8, 223-242.	8.3	153
38	High-yield expression of a viral peptide animal vaccine in transgenic tobacco chloroplasts. Plant Biotechnology Journal, 2004, 2, 141-153.	8.3	151
39	Expression of Bacillus anthracis protective antigen in transgenic chloroplasts of tobacco, a non-food/feed crop. Vaccine, 2004, 22, 4374-4384.	3.8	150
40	Oral delivery of human biopharmaceuticals, autoantigens and vaccine antigens bioencapsulated in plant cells. Advanced Drug Delivery Reviews, 2013, 65, 782-799.	13.7	149
41	Field production and functional evaluation of chloroplast-derived interferon-?2b. Plant Biotechnology Journal, 2007, 5, 511-525.	8.3	144
42	Engineered chloroplast dsRNA silences <i>cytochrome p450 monooxygenase</i> , <i> V</i> â€ <i>ATPase</i> and <i>chitin synthase</i> genes in the insect gut and disrupts <i>Helicoverpa armigera</i> larval development and pupation. Plant Biotechnology Journal, 2015, 13, 435-446.	8.3	144
43	The location and translocation of ndh genes of chloroplast origin in the Orchidaceae family. Scientific Reports, 2015, 5, 9040.	3.3	143
44	The Engineered Chloroplast Genome Just Got Smarter. Trends in Plant Science, 2015, 20, 622-640.	8.8	142
45	Oral delivery of bioencapsulated coagulation factor IX prevents inhibitor formation and fatal anaphylaxis in hemophilia B mice. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7101-7106.	7.1	140
46	Chloroplast-derived vaccine antigens and other therapeutic proteins. Vaccine, 2005, 23, 1779-1783.	3.8	136
47	Lowâ€cost production of proinsulin in tobacco and lettuce chloroplasts for injectable or oral delivery of functional insulin and Câ€peptide. Plant Biotechnology Journal, 2011, 9, 585-598.	8.3	136
48	Transgene containment by maternal inheritance: Effective or elusive?. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6879-6880.	7.1	134
49	Characterization of Heterologous Multigene Operons in Transgenic Chloroplasts. Transcription, Processing, and Translation. Plant Physiology, 2005, 138, 1746-1762.	4.8	133
50	A protocol for expression of foreign genes in chloroplasts. Nature Protocols, 2008, 3, 739-758.	12.0	132
51	Optimization of delivery of foreign DNA into higher-plant chloroplasts. Plant Molecular Biology, 1990, 15, 809-819.	3.9	126
52	Oral Delivery of Angiotensin-Converting Enzyme 2 and Angiotensin-(1-7) Bioencapsulated in Plant Cells Attenuates Pulmonary Hypertension. Hypertension, 2014, 64, 1248-1259.	2.7	126
53	Genetic engineering to enhance mercury phytoremediation. Current Opinion in Biotechnology, 2009, 20, 213-219.	6.6	125
54	The complete chloroplast genome sequence of Gossypium hirsutum: organization and phylogenetic relationships to other angiosperms. BMC Genomics, 2006, 7, 61.	2.8	124

#	Article	IF	CITATIONS
55	Low cost industrial production of coagulation factor IX bioencapsulated in lettuce cells for oral tolerance induction in hemophilia B. Biomaterials, 2015, 70, 84-93.	11.4	124
56	Chloroplastâ€derived enzyme cocktails hydrolyse lignocellulosic biomass and release fermentable sugars. Plant Biotechnology Journal, 2010, 8, 332-350.	8.3	122
57	Multigene engineering: dawn of an exciting new era in biotechnology. Current Opinion in Biotechnology, 2002, 13, 136-141.	6.6	120
58	Phytoremediation of Mercury and Organomercurials in Chloroplast Transgenic Plants: Enhanced Root Uptake, Translocation to Shoots, and Volatilization. Environmental Science & Technology, 2007, 41, 8439-8446.	10.0	120
59	Effective Plague Vaccination via Oral Delivery of Plant Cells Expressing F1-V Antigens in Chloroplasts. Infection and Immunity, 2008, 76, 3640-3650.	2.2	120
60	Remodeling the isoprenoid pathway in tobacco by expressing the cytoplasmic mevalonate pathway in chloroplasts. Metabolic Engineering, 2012, 14, 19-28.	7.0	120
61	Plantâ€made oral vaccines against human infectious diseases—Are we there yet?. Plant Biotechnology Journal, 2015, 13, 1056-1070.	8.3	116
62	The chromosome-scale reference genome of black pepper provides insight into piperine biosynthesis. Nature Communications, 2019, 10, 4702.	12.8	115
63	Highâ€efficient and precise base editing of C•G to T•A in the allotetraploid cotton (<i>Cossypium) Tj ETQq1 2020, 18, 45-56.</i>	1 0.78431 8.3	14 rgBT /Ove 114
64	Expression and characterization of antimicrobial peptides Retrocyclinâ€101 and Protegrinâ€1 in chloroplasts to control viral and bacterial infections. Plant Biotechnology Journal, 2011, 9, 100-115.	8.3	112
65	Transcriptome analysis reveals a comprehensive insect resistance response mechanism in cotton to infestation by the phloem feeding insect Bemisia tabaci (whitefly). Plant Biotechnology Journal, 2016, 14, 1956-1975.	8.3	109
66	Low Cost Tuberculosis Vaccine Antigens in Capsules: Expression in Chloroplasts, Bio-Encapsulation, Stability and Functional Evaluation In Vitro. PLoS ONE, 2013, 8, e54708.	2.5	108
67	Altered lipid composition and enhanced lipid production in green microalga by introduction of brassica diacylglycerol acyltransferase 2. Plant Biotechnology Journal, 2015, 13, 540-550.	8.3	105
68	Chloroplast Genetic Engineering: Recent Advances and Future Perspectives. Critical Reviews in Plant Sciences, 2005, 24, 83-107.	5.7	100
69	Metabolic Engineering of the Chloroplast Genome Using the Echerichia coli ubiC Gene Reveals That Chorismate Is a Readily Abundant Plant Precursor for p-Hydroxybenzoic Acid Biosynthesis. Plant Physiology, 2004, 136, 4048-4060.	4.8	96
70	The complete nucleotide sequence of the cassava (Manihot esculenta) chloroplast genome and the evolution of atpF in Malpighiales: RNA editing and multiple losses of a group II intron. Theoretical and Applied Genetics, 2008, 116, 723-37.	3.6	96
71	Release of Hormones from Conjugates: Chloroplast Expression of Î ² -Glucosidase Results in Elevated Phytohormone Levels Associated with Significant Increase in Biomass and Protection from Aphids or Whiteflies Conferred by Sucrose Esters. Plant Physiology, 2011, 155, 222-235.	4.8	94
72	Suppression of inhibitor formation against FVIII in a murine model of hemophilia A by oral delivery of antigens bioencapsulated in plant cells. Blood, 2014, 124, 1659-1668.	1.4	94

#	Article	IF	CITATIONS
73	Plastid transformation in the monocotyledonous cereal crop, rice (Oryza sativa) and transmission of transgenes to their progeny. Molecules and Cells, 2006, 21, 401-10.	2.6	92
74	The complete nucleotide sequence of the coffee (Coffea arabica L.) chloroplast genome: organization and implications for biotechnology and phylogenetic relationships amongst angiosperms. Plant Biotechnology Journal, 2007, 5, 339-353.	8.3	90
75	Multiâ€omics analyses reveal epigenomics basis for cotton somatic embryogenesis through successive regeneration acclimation process. Plant Biotechnology Journal, 2019, 17, 435-450.	8.3	88
76	Complete plastid genome sequence of Daucus carota: Implications for biotechnology and phylogeny of angiosperms. BMC Genomics, 2006, 7, 222.	2.8	87
77	Receptorâ€mediated oral delivery of a bioencapsulated green fluorescent protein expressed in transgenic chloroplasts into the mouse circulatory system. FASEB Journal, 2006, 20, 959-961.	0.5	87
78	Green giant—a tiny chloroplast genome with mighty power to produce highâ€value proteins: history and phylogeny. Plant Biotechnology Journal, 2021, 19, 430-447.	8.3	86
79	Oral delivery of bioencapsulated exendinâ€4 expressed in chloroplasts lowers blood glucose level in mice and stimulates insulin secretion in betaâ€< scp>TC 6 cells. Plant Biotechnology Journal, 2013, 11, 77-86.	8.3	84
80	Compartmentalized Metabolic Engineering for Artemisinin Biosynthesis and Effective Malaria Treatment by Oral Delivery of Plant Cells. Molecular Plant, 2016, 9, 1464-1477.	8.3	83
81	Plastid biotechnology for crop production: present status and future perspectives. Plant Molecular Biology, 2011, 76, 211-220.	3.9	81
82	Metallothionein expression in chloroplasts enhances mercury accumulation and phytoremediation capability. Plant Biotechnology Journal, 2011, 9, 609-617.	8.3	76
83	Chloroplast Genetic Engineering to Improve Agronomic Traits. , 2005, 286, 111-138.		75
84	Optimization of codon composition and regulatory elements for expression of human insulin like growth factor-1 in transgenic chloroplasts and evaluation of structural identity and function. BMC Biotechnology, 2009, 9, 33.	3.3	75
85	Complete nucleotide sequence of Dendrocalamus latiflorus and Bambusa oldhamii chloroplast genomes. Tree Physiology, 2009, 29, 847-856.	3.1	74
86	Mechanism of oral tolerance induction to therapeutic proteins. Advanced Drug Delivery Reviews, 2013, 65, 759-773.	13.7	74
87	Oral Delivery of ACE2/Ang-(1–7) Bioencapsulated in Plant Cells Protects against Experimental Uveitis and Autoimmune Uveoretinitis. Molecular Therapy, 2014, 22, 2069-2082.	8.2	74
88	Oral Delivery of Protein Drugs Bioencapsulated in Plant Cells. Molecular Therapy, 2016, 24, 1342-1350.	8.2	73
89	Oral Delivery of Bioencapsulated Proteins Across Blood–Brain and Blood–Retinal Barriers. Molecular Therapy, 2014, 22, 535-546.	8.2	70
90	Complete Chloroplast Genome Sequence of an Orchid Model Plant Candidate: Erycina pusilla Apply in Tropical Oncidium Breeding. PLoS ONE, 2012, 7, e34738.	2.5	70

#	Article	IF	CITATIONS
91	Cold chain and virusâ€free chloroplastâ€made booster vaccine to confer immunity against different poliovirus serotypes. Plant Biotechnology Journal, 2016, 14, 2190-2200.	8.3	69
92	<i>Pinellia ternata</i> agglutinin expression in chloroplasts confers broad spectrum resistance against aphid, whitefly, <i>Lepidopteran</i> insects, bacterial and viral pathogens. Plant Biotechnology Journal, 2012, 10, 313-327.	8.3	68
93	Expression of γâ€ŧocopherol methyltransferase in chloroplasts results in massive proliferation of the inner envelope membrane and decreases susceptibility to salt and metalâ€induced oxidative stresses by reducing reactive oxygen species. Plant Biotechnology Journal, 2014, 12, 1274-1285.	8.3	68
94	Expression of βâ€glucosidase increases trichome density and artemisinin content in transgenic <i>Artemisia annua</i> plants. Plant Biotechnology Journal, 2016, 14, 1034-1045.	8.3	68
95	Hyper expression of an environmentally friendly synthetic polymer gene. Biotechnology Letters, 1995, 17, 745-750.	2.2	65
96	Transformation and Foreign Gene Expression in Plants Mediated by Microprojectile Bombardment. , 1997, 62, 463-490.		64
97	Stable expression of Gal/GalNAc lectin of Entamoeba histolytica in transgenic chloroplasts and immunogenicity in mice towards vaccine development for amoebiasis. Plant Biotechnology Journal, 2007, 5, 230-239.	8.3	64
98	Low ost oral delivery of protein drugs bioencapsulated in plant cells. Plant Biotechnology Journal, 2015, 13, 1017-1022.	8.3	64
99	Plantâ€based oral vaccines against zoonotic and nonâ€zoonotic diseases. Plant Biotechnology Journal, 2016, 14, 2079-2099.	8.3	64
100	Chloroplast-Derived Vaccine Antigens and Biopharmaceuticals: Expression, Folding, Assembly and Functionality. Current Topics in Microbiology and Immunology, 2009, 332, 33-54.	1.1	63
101	Expression of dengue-3 premembrane and envelope polyprotein in lettuce chloroplasts. Plant Molecular Biology, 2011, 76, 323-333.	3.9	60
102	Vaccination via Chloroplast Genetics: Affordable Protein Drugs for the Prevention and Treatment of Inherited or Infectious Human Diseases. Annual Review of Genetics, 2016, 50, 595-618.	7.6	59
103	Plant-based oral tolerance to hemophilia therapy employs a complex immune regulatory response including LAP+CD4+ T cells. Blood, 2015, 125, 2418-2427.	1.4	57
104	Arabidopsis Tic40 Expression in Tobacco Chloroplasts Results in Massive Proliferation of the Inner Envelope Membrane and Upregulation of Associated Proteins. Plant Cell, 2008, 20, 3405-3417.	6.6	54
105	Oral Tolerance Induction in Hemophilia B Dogs Fed with Transplastomic Lettuce. Molecular Therapy, 2017, 25, 512-522.	8.2	54
106	Engineering the Chloroplast Genome for Hyperexpression of Human Therapeutic Proteins and Vaccine Antigens. , 2004, 267, 365-384.		53
107	Cold chain and virusâ€free oral polio booster vaccine made in lettuce chloroplasts confers protection against all three poliovirus serotypes. Plant Biotechnology Journal, 2019, 17, 1357-1368.	8.3	52
108	Oral delivery of Acid Alpha Glucosidase epitopes expressed in plant chloroplasts suppresses antibody formation in treatment of Pompe mice. Plant Biotechnology Journal, 2015, 13, 1023-1032.	8.3	51

#	Article	IF	CITATIONS
109	Codon Optimization to Enhance Expression Yields Insights into Chloroplast Translation. Plant Physiology, 2016, 172, 62-77.	4.8	51
110	[38] Foreign gene expression in chloroplasts of higher plants mediated by tungsten particle bombardment. Methods in Enzymology, 1993, 217, 536-556.	1.0	50
111	Low cost delivery of proteins bioencapsulated in plant cells to human non-immune or immune modulatory cells. Biomaterials, 2016, 80, 68-79.	11.4	50
112	Expression and functional evaluation of biopharmaceuticals made in plant chloroplasts. Current Opinion in Chemical Biology, 2017, 38, 17-23.	6.1	50
113	The green vaccine: A global strategy to combat infectious and autoimmune diseases. Hum Vaccin, 2009, 5, 488-493.	2.4	48
114	Role of orally induced regulatory T cells in immunotherapy and tolerance. Cellular Immunology, 2021, 359, 104251.	3.0	48
115	Transgenic perennial biofuel feedstocks and strategies for bioconfinement. Biofuels, 2010, 1, 163-176.	2.4	47
116	Topical delivery of low-cost protein drug candidates made in chloroplasts for biofilm disruption and uptake by oral epithelial cells. Biomaterials, 2016, 105, 156-166.	11.4	46
117	Expression and assembly of largest foreign protein in chloroplasts: oral delivery of human FVIII made in lettuce chloroplasts robustly suppresses inhibitor formation in haemophilia A mice. Plant Biotechnology Journal, 2018, 16, 1148-1160.	8.3	46
118	Plant cell-made protein antigens for induction of Oral tolerance. Biotechnology Advances, 2019, 37, 107413.	11.7	44
119	Contributions of the international plant science community to the fight against human infectious diseases – part 1: epidemic and pandemic diseases. Plant Biotechnology Journal, 2021, 19, 1901-1920.	8.3	44
120	Expression of Trichoderma reesei β-Mannanase in Tobacco Chloroplasts and Its Utilization in Lignocellulosic Woody Biomass Hydrolysis. PLoS ONE, 2011, 6, e29302.	2.5	44
121	Hyperexpression of a Synthetic Protein-Based Polymer Gene. , 1997, 63, 359-372.		42
122	How can plant genetic engineering contribute to cost-effective fish vaccine development for promoting sustainable aquaculture?. Plant Molecular Biology, 2013, 83, 33-40.	3.9	42
123	Investigational new drug enabling angiotensin oral-delivery studies to attenuate pulmonary hypertension. Biomaterials, 2020, 233, 119750.	11.4	42
124	Release of Proteins from Intact Chloroplasts Induced by Reactive Oxygen Species during Biotic and Abiotic Stress. PLoS ONE, 2013, 8, e67106.	2.5	41
125	GM crops: public perception and scientific solutions. Trends in Plant Science, 1999, 4, 467-469.	8.8	40
126	Expression of an Antimicrobial Peptide via the Chloroplast Genome to Control Phytopathogenic Bacteria and Fungi. Plant Physiology, 2001, 127, 852-862.	4.8	40

#	Article	IF	CITATIONS
127	Expression of an environmentally friendly synthetic protein-based polymer gene in transgenic tobacco plants. Plant Cell Reports, 1996, 16, 174-179.	5.6	39
128	Antibiotic-free chloroplast genetic engineering – an environmentally friendly approach. Trends in Plant Science, 2001, 6, 237-239.	8.8	39
129	Debulking SARS-CoV-2 in saliva using angiotensin converting enzyme 2 in chewing gum to decrease oral virus transmission and infection. Molecular Therapy, 2022, 30, 1966-1978.	8.2	39
130	Validation of leaf enzymes in the detergent and textile industries: launching of a new platform technology. Plant Biotechnology Journal, 2019, 17, 1167-1182.	8.3	37
131	Expression of Fungal Cutinase and Swollenin in Tobacco Chloroplasts Reveals Novel Enzyme Functions and/or Substrates. PLoS ONE, 2013, 8, e57187.	2.5	36
132	Activation of human mast cells by retrocyclin and protegrin highlight their immunomodulatory and antimicrobial properties. Oncotarget, 2015, 6, 28573-28587.	1.8	36
133	A comparative study on the transformation of Aspergillus nidulans by microprojectile bombardment of conidia and a more conventional procedure using protoplasts treated with polyethyleneglycol. Applied Microbiology and Biotechnology, 1996, 45, 333-337.	3.6	35
134	Validation of leaf and microbial pectinases: commercial launching of a new platform technology. Plant Biotechnology Journal, 2019, 17, 1154-1166.	8.3	34
135	New tools for chloroplast genetic engineering. Nature Biotechnology, 1999, 17, 855-856.	17.5	32
136	Expression of a synthetic protein-based polymer (elastomer) gene in Aspergillus nidulans. Applied Microbiology and Biotechnology, 1997, 47, 368-372.	3.6	31
137	Editing Plant Genomes: a new era of crop improvement. Plant Biotechnology Journal, 2016, 14, 435-436.	8.3	31
138	Production of tetravalent dengue virus envelope protein domain <scp>III</scp> based antigens in lettuce chloroplasts and immunologic analysis for future oral vaccine development. Plant Biotechnology Journal, 2019, 17, 1408-1417.	8.3	31
139	Contributions of the international plant science community to the fight against infectious diseases in humans—part 2: Affordable drugs in edible plants for endemic and reâ€emerging diseases. Plant Biotechnology Journal, 2021, 19, 1921-1936.	8.3	31
140	Chloroplast Derived Antibodies, Biopharmaceuticals and Edible Vaccines. , 2005, , 113-133.		30
141	Environmentally friendly approaches to genetic engineering. In Vitro Cellular and Developmental Biology - Plant, 1999, 35, 361-368.	2.1	29
142	Chloroplast Genetic Engineering. , 2004, , 443-490.		29
143	Terpene metabolic engineering <i>via</i> nuclear or chloroplast genomes profoundly and globally impacts offâ€target pathways through metabolite signalling. Plant Biotechnology Journal, 2016, 14, 1862-1875.	8.3	29
144	Plant Single Cell Transcriptome Hub (PsctH): an integrated online tool to explore the plant single ell transcriptome landscape. Plant Biotechnology Journal, 2022, 20, 10-12.	8.3	27

#	Article	IF	CITATIONS
145	Chloroplast culture VIII a new effect of kinetin in enhancing the synthesis and accumulation of protochlorophyllide invitro. Biochemical and Biophysical Research Communications, 1982, 104, 837-843.	2.1	26
146	Advances in molecular farming: key technologies, scaled up production and lead targets. Plant Biotechnology Journal, 2015, 13, 1011-1012.	8.3	26
147	Title is missing!. Biotechnology Letters, 1997, 19, 395-400.	2.2	24
148	Genetically Modified Food Crops: Current Concerns and Solutions for Next Generation Crops. Biotechnology and Genetic Engineering Reviews, 2000, 17, 327-352.	6.2	24
149	Long-term evaluation of mucosal and systemic immunity and protection conferred by different polio booster vaccines. Vaccine, 2017, 35, 5418-5425.	3.8	24
150	Chloroplast culture IX chlorophyll(ide) a biosynthesis invitro at rates higher than inMvivo. Biochemical and Biophysical Research Communications, 1982, 106, 466-470.	2.1	23
151	Jumping genes and containment. Nature Biotechnology, 2003, 21, 374-375.	17.5	23
152	Novel pathways for glycoprotein import into chloroplasts. Plant Biotechnology Journal, 2006, 4, 275-279.	8.3	21
153	Accumulation of sweet protein monellin is regulated by thepsbA 5′UTR in tobacco chloroplasts. Journal of Plant Biology, 2006, 49, 34-43.	2.1	21
154	Chloroplast-Derived Vaccine Antigens and Biopharmaceuticals: Protocols for Expression, Purification, or Oral Delivery and Functional Evaluation. Methods in Molecular Biology, 2009, 483, 163-192.	0.9	20
155	Plant-based vaccines for oral delivery of type 1 diabetes-related autoantigens: Evaluating oral tolerance mechanisms and disease prevention in NOD mice. Scientific Reports, 2017, 7, 42372.	3.3	20
156	Chloroplast-derived anthrax and other vaccine antigens: their immunogenic and immunoprotective properties. Expert Review of Vaccines, 2006, 5, 839-849.	4.4	19
157	Chloroplast biotechnology, genomics and evolution: current status, challenges and future directions. Plant Molecular Biology, 2011, 76, 207-209.	3.9	19
158	Mapping the T helper cell response to acid α-glucosidase in Pompe mice. Molecular Genetics and Metabolism, 2012, 106, 189-195.	1.1	19
159	Role of Small Intestine and Gut Microbiome in Plant-Based Oral Tolerance for Hemophilia. Frontiers in Immunology, 2020, 11, 844.	4.8	19
160	Preclinical development of plantâ€based oral immune modulatory therapy for haemophilia B. Plant Biotechnology Journal, 2021, 19, 1952-1966.	8.3	17
161	Affordable oral health care: dental biofilm disruption using chloroplast made enzymes with chewing gum delivery. Plant Biotechnology Journal, 2021, 19, 2113-2125.	8.3	17
162	Evaluation of biolistic gene transfer methods in vivo using non-invasive bioluminescent imaging techniques. BMC Biotechnology, 2011, 11, 62.	3.3	16

#	Article	IF	CITATIONS
163	The potential of plant systems to break the HIVâ€TB link. Plant Biotechnology Journal, 2019, 17, 1868-1891.	8.3	16
164	Debulking different Corona (SARS-CoV-2 delta, omicron, OC43) and Influenza (H1N1, H3N2) virus strains by plant viral trap proteins in chewing gums to decrease infection and transmission. Biomaterials, 2022, 288, 121671.	11.4	16
165	Decrease in Angiotensin-Converting Enzyme activity but not concentration in plasma/lungs in COVID-19 patients offers clues for diagnosis/treatment. Molecular Therapy - Methods and Clinical Development, 2022, 26, 266-278.	4.1	15
166	Bioengineering of photosynthetic membranes. Requirement of magnesium for the conversion of chlorophyllidea to chlorophylla during the greening of etiochloroplastsin vitro. Biotechnology and Bioengineering, 1984, 26, 481-487.	3.3	14
167	Characterization of DNA uptake by the cyanobacterium Anacystis nidulans. Molecular Genetics and Genomics, 1986, 204, 243-248.	2.4	14
168	Miniâ€synplastomes for plastid genetic engineering. Plant Biotechnology Journal, 2022, 20, 360-373.	8.3	14
169	Isolation and Characterization of an in Vitro DNA Replication System from Maize Mitochondria. Biochemical and Biophysical Research Communications, 1995, 208, 287-294.	2.1	13
170	Chloroplast Genetic Engineering Via Organogenesis or Somatic Embryogenesis. , 2006, 323, 245-262.		13
171	Nuclear expression of an environmentally friendly synthetic protein based polymer gene in tobacco cells. Biotechnology Letters, 1995, 17, 1279.	2.2	12
172	In vitro synthesis of photosynthetic membranes: I. Development of photosystem I activity and cyclic photophosphorylation. Biochemical and Biophysical Research Communications, 1983, 111, 740-749.	2.1	11
173	A 7.5-kbp region of the maize (T cytoplasm) mitochondrial genome contains a chloroplast-like trnl (CAT) pseudo gene and many short segments homologous to chloroplast and other known genes. Current Genetics, 1997, 32, 125-131.	1.7	11
174	Chloroplast-transgenic plants: Panacea-No! Gene Containment-Yes!. Nature Biotechnology, 1998, 16, 602-602.	17.5	11
175	Oral delivery of therapeutic proteins bioencapsulated in plant cells: Preclinical and clinical advances. Current Opinion in Colloid and Interface Science, 2021, 54, 101452.	7.4	11
176	Transformation of sweet potato tissues with green-fluorescent protein gene. In Vitro Cellular and Developmental Biology - Plant, 2001, 37, 648-653.	2.1	10
177	Generation, analysis, and transformation of macro-chloroplast Potato (Solanum tuberosum) lines for chloroplast biotechnology. Scientific Reports, 2020, 10, 21144.	3.3	10
178	An efficient and prolonged in vitro translational system from isolated cucumber etioplasts. Biochemical and Biophysical Research Communications, 1986, 135, 248-255.	2.1	9
179	Phylogenomic evidence of bryophytes' monophyly using complete and incomplete data sets from chloroplast proteomes. Journal of Plant Biochemistry and Biotechnology, 2011, 20, 288-292.	1.7	7
180	From δ-aminolevulinic acid to chlorophylls and every step in between: in memory of Constantin (Tino) A. Rebeiz, 1936–2019. Photosynthesis Research, 2020, 145, 71-82.	2.9	7

#	Article	IF	CITATIONS
181	Medical Molecular Pharming: Expression of Antibodies, Biopharmaceuticals and Edible Vaccines via the Chloroplast Genome. , 2003, , 371-376.		7
182	Chloroplast Genetic Engineering. Biotechnology Journal, 2006, 1, 31-33.	3.5	6
183	Genetic manipulation of Soc1 â€like genes promotes photosynthesis in flowers and leaves and enhances plant tolerance to high temperature. Plant Biotechnology Journal, 2021, 19, 8-10.	8.3	6
184	Genetic Modification in Dedicated Bioenergy Crops and Strategies for Gene Confinement. Biotechnology in Agriculture and Forestry, 2010, , 299-315.	0.2	6
185	Medical Molecular Pharming: Therapeutic Recombinant Antibodies, Biopharmaceuticals and Edible Vaccines in Transgenic Plants Engineered via the Chloroplast Genome. , 2004, , 705-710.		5
186	Site of electron acceptance by 3,6-dichloro-2,5-dimethoxy-p-benzoquinone and its relation to the bicarbonate effect on photosynthetic electron transport. Biochemical and Biophysical Research Communications, 1981, 102, 944-951.	2.1	4
187	In Vitro Replication of Cyanobacterial Plasmids from Synechocystis PCC 6803. Plasmid, 1994, 32, 195-207.	1.4	4
188	Plastid Pathways. , 2007, , 79-108.		4
189	Editorial. Plant Biotechnology Journal, 2015, 13, 1-1.	8.3	4
190	From conception to COVIDâ€19: an arduous journey of tribulations of racism and triumphs. Plant Biotechnology Journal, 2020, 18, 2147-2154.	8.3	4
191	Engineering Plants for Stress Tolerance via Organelle Genomes. , 1994, , 589-604.		4
192	Radioisotopic evidence for the polypeptides associated with photosystem II. Biochemical and Biophysical Research Communications, 1984, 125, 988-995.	2.1	3
193	Oxygenic photoreduction of methyl viologen and nicotinamide adenine dinucleotide phosphate without the involvement of photosystem I during plastid development. Biochemical and Biophysical Research Communications, 1985, 126, 1114-1121.	2.1	3
194	Binding, uptake and expression of foreign DNA by cyanobacteria and isolated etioplasts. Photosynthesis Research, 1988, 19, 23-37.	2.9	3
195	OBPC Symposium: Maize 2004 & beyond—Recent advances in chloroplast genetic engineering. In Vitro Cellular and Developmental Biology - Plant, 2005, 41, 388-404.	2.1	3
196	Motif analysis unveils the possible co-regulation of chloroplast genes and nuclear genes encoding chloroplast proteins. Plant Molecular Biology, 2012, 80, 177-187.	3.9	3
197	Oral Delivery of Bioencapsulated Factor IX Protects From Inhibitor Formation and Anaphylaxis in Protein Replacement Therapy for Hemophilia B Blood, 2009, 114, 222-222.	1.4	3
198	Is direct spectrophotometric determination of chlorophyll in pigment extracts of tissues under different physiological conditions valid?. Biochemical and Biophysical Research Communications, 1982, 105, 698-704.	2.1	2

#	Article	IF	CITATIONS
199	Suppression of Inhibitor Formation Against Factor VIII in Hemophilia A Mice by Oral Delivery of Bioencapsulated Antigen. Blood, 2012, 120, 14-14.	1.4	2
200	Preface: Chloroplast Biotechnology. Plant Biotechnology Journal, 2011, 9, 525-526.	8.3	1
201	Chloroplast-Derived Therapeutic and Prophylactic Vaccines. , 2012, , 69-87.		1
202	PBJ is now an open access journal. Plant Biotechnology Journal, 2016, 14, 3-3.	8.3	1
203	The Science of Gene Flow in Agriculture and Its Role in Coexistence. , 2016, , 13-37.		1
204	PBJ publishes high-impact original plant biotechnology research with free global access. Plant Biotechnology Journal, 2018, 16, 3-3.	8.3	1
205	PBJ is ranked higher, publishes more original articles and offers free global access. Plant Biotechnology Journal, 2019, 17, 3-4.	8.3	1
206	PBJ ranks higher, despite publishing more original articles, very few editorial materials and offers free global access. Plant Biotechnology Journal, 2020, 18, 3-4.	8.3	1
207	Engineering the Chloroplast Genome to Confer Stress Tolerance and Production of Pharmaceutical Proteins. , 2002, , 427-451.		1
208	Mechanism Of Oral Tolerance Induced By Bioencapsulated Coagulation Factor IX In Hemophilia B Mice. Blood, 2013, 122, 30-30.	1.4	1
209	Factor IX Expressed in Lettuce Chloroplasts Induces Oral Tolerance in Hemophilia B Mice. Blood, 2015, 126, 292-292.	1.4	1
210	PBJ ranks higher, enhances diversity and offers free global access. Plant Biotechnology Journal, 2021, 19, 3-4.	8.3	1
211	Study of proton translocation in chloroplasts $\hat{a} \in$ A new approach. Biochemical and Biophysical Research Communications, 1982, 107, 1191-1197.	2.1	0
212	When is it appropriate to cite?. Plant Molecular Biology Reporter, 1991, 9, 98-100.	1.8	0
213	The Application of the Chloroplast Genome of <i>Oncidium</i> in Plant Identification and Breeding in Oncidiinae. , 2011, , 253-266.		0
214	Editorial. Plant Biotechnology Journal, 2015, 13, 281-281.	8.3	0
215	<scp>PBJ</scp> is now a leading open access plant journal. Plant Biotechnology Journal, 2017, 15, 3-3.	8.3	0
216	Journal Flexibility in the Troubling Times of COVID-19. Plant Physiology, 2020, 182, 1795-1795.	4.8	0

#	Article	IF	CITATIONS
217	Journal Flexibility in the Troubling Times of COVID-19. Plant Cell, 2020, 32, 1337-1337.	6.6	0
218	PBJ celebrates twenty years of service to the scientific community by offering free global access, improved ranking and diversity. Plant Biotechnology Journal, 2022, 20, 3-9.	8.3	0
219	Expression of an environmentally friendly synthetic protein-based polymer gene in transgenic tobacco plants. Plant Cell Reports, 1996, 16, 174-179.	5.6	0