Liang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9328780/publications.pdf

Version: 2024-02-01

713332 687220 31 467 13 21 citations h-index g-index papers 31 31 31 398 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Shock-induced deformation of nanocrystalline Al: Characterization with orientation mapping and selected area electron diffraction. Journal of Applied Physics, 2015, 117, .	1.1	33
2	Shock-induced melting of honeycomb-shaped Cu nanofoams: Effects of porosity. Journal of Applied Physics, 2015, 118 , .	1.1	30
3	Loading-path dependent deformation of nanocrystalline Ta under single- and double-shock, and quasi-isentropic compression. Journal of Applied Physics, 2017, 121, .	1.1	30
4	Tensile and nanoindentation deformation of amorphous/crystalline nanolaminates: Effects of layer thickness and interface type. Computational Materials Science, 2018, 154, 225-233.	1.4	28
5	Capture Deformation Twinning in Mg during Shock Compression with Ultrafast Synchrotron X-Ray Diffraction. Physical Review Letters, 2019, 123, 255501.	2.9	28
6	Revealing the Reaction Mechanism of Sodium Selenide Confined within a Single-Walled Carbon Nanotube: Implications for Na–Se Batteries. ACS Applied Materials & Diterfaces, 2019, 11, 4995-5002.	4.0	27
7	Short- and medium-range orders in Cu ₄₆ Zr ₅₄ metallic glasses under shock compression. Journal of Applied Physics, 2015, 118, 015901.	1.1	26
8	Shock response of open-cell nanoporous Cu foams: Effects of porosity and specific surface area. Journal of Applied Physics, 2015, 118, .	1.1	22
9	Grain boundary orientation effects on deformation of Ta bicrystal nanopillars under high strain-rate compression. Journal of Applied Physics, 2014, 115, .	1.1	21
10	Second yield via dislocation-induced premelting in copper. Physical Review B, 2016, 93, .	1.1	20
11	Shock wave propagation, plasticity, and void collapse in open-cell nanoporous Ta. Physical Chemistry Chemical Physics, 2018, 20, 28039-28048.	1.3	19
12	Homogeneous crystal nucleation in liquid copper under quasi-isentropic compression. Physical Review B, 2015, 92, .	1.1	16
13	Orientation and grain-boundary dependence of shock-induced plasticity and transformation in nanocrystalline Ti. Physical Review B, 2019, 99, .	1.1	16
14	Helium nanobubble release from Pd surface: An atomic simulation. Journal of Materials Research, 2011, 26, 416-423.	1.2	13
15	Precipitate/vanadium interface and its strengthening on the vanadium alloys: A first-principles study. Journal of Nuclear Materials, 2019, 527, 151821.	1.3	13
16	Role of local chemical fluctuations in the melting of medium entropy alloy CoCrNi. Applied Physics Letters, 2021, 119, .	1.5	13
17	Shock-induced migration of Σ3ã€^110〉 grain boundaries in Cu. Journal of Applied Physics, 2017, 121, .	1.1	12
18	Deformation of metals under dynamic loading: Characterization via atomic-scale orientation mapping. Computational Materials Science, 2018, 153, 338-347.	1.4	12

#	Article	IF	CITATIONS
19	Atomistic simulation of helium bubble nucleation in palladium. Nuclear Instruments & Methods in Physics Research B, 2009, 267, 3185-3188.	0.6	10
20	Computer Simulation of Helium Effects in Plutonium During the Aging Process of Self-Radiation Damage. Communications in Computational Physics, 2012, 11, 1205-1225.	0.7	10
21	Intrinsic strain-induced segregation in multiply twinned Cu–Pt icosahedra. Physical Chemistry Chemical Physics, 2019, 21, 4802-4809.	1.3	9
22	Local identification of chemical ordering: Extension, implementation, and application of the common neighbor analysis for binary systems. Computational Materials Science, 2018, 143, 195-205.	1.4	8
23	Macrodeformation twinning in a textured aluminum alloy via dynamic equal channel angular pressing. Journal of Materials Science, 2019, 54, 4314-4324.	1.7	8
24	Shock-induced plasticity and phase transformation in single crystal magnesium: an interatomic potential and non-equilibrium molecular dynamics simulations. Journal of Physics Condensed Matter, 2022, 34, 115401.	0.7	8
25	Texture of nanocrystalline solids: atomic scale characterization and applications. Journal of Applied Crystallography, 2018, 51, 124-132.	1.9	7
26	Acoustic and double elastic shock waves in single-crystal graphene. Journal of Applied Physics, 2020, 127, 055101.	1.1	7
27	Effect of voids on the tensile properties of vanadium nanowires. Nuclear Instruments & Methods in Physics Research B, 2013, 303, 14-17.	0.6	6
28	Surface premelting/recrystallization governing the collapse of open-cell nanoporous Cu <i>via</i> thermal annealing. Physical Chemistry Chemical Physics, 2018, 20, 16184-16192.	1.3	6
29	Molecular dynamics simulation of cylindrically converging shock response in single crystal Cu. Computational Materials Science, 2020, 183, 109845.	1.4	6
30	Synergistically engineering of shell thickness and core ordering to boost the oxygen reduction performance. Physical Chemistry Chemical Physics, 0, , .	1.3	2
31	Study on the relationship between surface and dislocation of nanoporous copper under cyclic shear loading. AIP Advances, 2022, 12, .	0.6	1