
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9328766/publications.pdf Version: 2024-02-01

ΠΗΛΝΙΙ ΡΛΝΤ

#	Article	IF	CITATIONS
1	Hot Deformation Behavior and Processing Map of Cu-Cr-Nb-Zr Alloy. Journal of Materials Engineering and Performance, 2022, 31, 1325-1337.	1.2	3
2	Microstructure and Mechanical Properties of Ti6Al4V Alloy Electron Beam Weldment at Varying Heat Treatment conditions. Transactions of the Indian Institute of Metals, 2020, 73, 1879-1890.	0.7	1
3	Texture strengthening and anisotropic hardening of mill annealed Ti-6Al-4V alloy under equi-biaxial tension. Materials Characterization, 2020, 164, 110349.	1.9	12
4	Brazing of Martensitic Stainless Steel to Copper Using Electroplated Copper and Silver Coatings. Journal of Materials Engineering and Performance, 2019, 28, 1190-1200.	1.2	3
5	High-Temperature Tensile Behavior of Cu-3Ag-0.5Zr Alloy in the Solution-Treated Condition. Journal of Materials Engineering and Performance, 2019, 28, 7359-7363.	1.2	0
6	Effect of Hot Rolling on the Microstructure and Mechanical Properties of NitrogenÂAlloyed Austenitic Stainless Steel. Journal of Materials Engineering and Performance, 2018, 27, 2388-2393.	1.2	5
7	High Strength, Utilizable Ductility and Electrical Conductivity in ColdÂRolled Sheets of Cu-Cr-Zr-Ti Alloy. Journal of Materials Engineering and Performance, 2018, 27, 787-793.	1.2	15
8	Effect of Post-Weld Heat Treatment on the Microstructure and Mechanical Properties of Friction Stir Welds of Cu–Cr–Zr–Ti Alloy. Metallography, Microstructure, and Analysis, 2018, 7, 703-710.	0.5	5
9	Achieving higher strength in Cu–Ag–Zr alloy by warm/hot rolling. Rare Metals, 2017, 36, 263-267.	3.6	15
10	Brazing of stainless steels using Cu-Ag-Mn-Zn braze filler: Studies on wettability, mechanical properties, and microstructural aspects. Materials and Design, 2017, 121, 213-228.	3.3	22
11	Design, Development and Testing of Inconel Alloy IN718 Spherical Gas Bottle for Oxygen Storage. Journal of Materials Engineering and Performance, 2017, 26, 5355-5365.	1.2	3
12	Microstructure and Properties of Nitrogen-Alloyed Martensitic Stainless Steel. Metallography, Microstructure, and Analysis, 2017, 6, 425-432.	0.5	10
13	Transient Liquid Phase Bonding of Cu-Cr-Zr-Ti Alloy Using Ni and Mn Coatings: Microstructural Evolution and Mechanical Properties. Journal of Materials Engineering and Performance, 2017, 26, 4064-4071.	1.2	1
14	Thermomechanical fatigue behavior of annealed Cu-Cr-Zr-Ti alloy in argon atmosphere. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 705, 11-19.	2.6	3
15	High Strength and Good Ductility in Cu-3Ag-0.5Zr Alloy by Cryo-Rolling and Aging. Journal of Materials Engineering and Performance, 2017, 26, 350-357.	1.2	10
16	Heat Treatment and Thermo-Mechanical Treatment to Modify Carbide Banding in AISI 440C Steel: A Case Study. Metallography, Microstructure, and Analysis, 2016, 5, 108-115.	0.5	16
17	Processing and Characterization of Sub-delta Solvus Forged Hemispherical Forgings of Inconel 718. Journal of Materials Engineering and Performance, 2016, 25, 5477-5485.	1.2	6
18	Strengthening in high strength Cu-Cr-Zr-Ti alloy plates produced by hot rolling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 674, 164-170.	2.6	38

#	Article	IF	CITATIONS
19	Plasma Ion Nitriding of Low Carbon Stainless Maraging Steel. Materials Science Forum, 2015, 830-831, 675-678.	0.3	Ο
20	On the direct aging of iron based superalloy hot rolled plates. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 648, 274-279.	2.6	17
21	Thermo Mechanical Working and Heat Treatment Studies on Meta-Stable Beta Titanium Alloy (Ti15V3Al3Sn3Cr) Plates. Materials Science Forum, 2015, 830-831, 151-155.	0.3	3
22	Microstructure and Properties of 15Crâ€5Niâ€1Moâ€1W Martensitic Stainless Steel. Steel Research International, 2015, 86, 51-57.	1.0	18
23	Role of Material Thickness on Tensile Properties of Ti6Al4V Welds. Transactions of the Indian Institute of Metals, 2015, 68, 423-431.	0.7	4
24	High-Temperature Deformation Processing Map Approach for Obtaining the Desired Microstructure in a Multi-component (Ni-Ti-Cu-Fe) Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 2201-2215.	1.1	12
25	Effect of Grain Boundary Alpha on Mechanical Properties of Ti5.4Al3Mo1V Alloy. Jom, 2015, 67, 1265-1272.	0.9	11
26	Effect of Heat Treatment on the Microstructure and Hardness of 17Cr-0.17N-0.43C-1.7 Mo Martensitic Stainless Steel. Journal of Materials Engineering and Performance, 2015, 24, 1656-1662.	1.2	12
27	Analysis of Phases and Their Role in Strengthening of Cu-Cr-Zr-Ti Alloy. Journal of Materials Engineering and Performance, 2015, 24, 2341-2345.	1.2	22
28	Hot Pressing and Characterization of ZrB ₂ -SiC-MoSi ₂ Composite. Materials Science Forum, 2015, 830-831, 421-424.	0.3	3
29	Effect of EBW Parameters on Weldment Quality of Ti6Al4V Alloy. Materials Science Forum, 2015, 830-831, 249-252.	0.3	1
30	Characterization of Electron Beam Weld Joints of Alpha-Beta Titanium Alloys for Cryogenic Applications. Materials Science Forum, 2015, 830-831, 257-260.	0.3	0
31	Studies on Friction Stir Welding of Al-Cu-Li (AA2195) Alloy. Materials Science Forum, 2015, 830-831, 274-277.	0.3	3
32	Effect of Varying Process Parameters on the Microstructure and Mechanical Properties of Cu-Cr-Zr-Ti Alloy Brazed Using Cu-Mn-Ni-Sn-Fe Foil. Materials Science Forum, 2015, 830-831, 253-256.	0.3	1
33	Microstructure and micro-texture evolution during large strain deformation of Inconel alloy IN718. Materials Characterization, 2015, 110, 236-241.	1.9	31
34	Microstructure and micro-texture evolution during large strain deformation of an aluminium–copper–lithium alloy AA 2195. Materials & Design, 2015, 65, 862-868.	5.1	70
35	Enhanced Strength in Cu-Ag-Zr Alloy by Combination of Cold Working and Aging. Journal of Materials Engineering and Performance, 2014, 23, 1458-1464.	1.2	18
36	Mechanical properties of aluminium–copper–lithium alloy AA2195 at cryogenic temperatures. Materials & Design, 2014, 58, 445-450.	5.1	56

#	Article	IF	CITATIONS
37	Theory and Practice of γÂ+Âα2 Ti Aluminide: A Review. Transactions of the Indian Institute of Metals, 2014, 67, 143-165.	0.7	35
38	Hot deformation behaviour and microstructure control in AlCrCuNiFeCo high entropy alloy. Intermetallics, 2014, 55, 145-153.	1.8	86
39	Properties and Strengthening Mechanisms in Cold-Rolled and Aged Cu–3Ag–0.5Zr Alloy. Metallography, Microstructure, and Analysis, 2014, 3, 323-327.	0.5	17
40	Reaction Synthesis and Homogenization Of \hat{I}^3 + $\hat{I}\pm 2$ Titanium Aluminide Alloys. Metal Science and Heat Treatment, 2014, 56, 33-40.	0.2	2
41	Heat Treatment Study of γ + α2 Ti Aluminides Obtained through Reaction Synthesis and Hot Deformation High Temperature Materials and Processes, 2014, 33, 49-57.	on. 0.6	2
42	Closed Die Hammer Forging of Inconel 718. Journal of Metallurgy, 2014, 2014, 1-7.	1.1	10
43	Effect of Heat Treatment on Microstructure and Mechanical Properties of 12Cr–10Ni–0.25Ti–0.7Mo Stainless Steel. Metallography, Microstructure, and Analysis, 2013, 2, 234-241.	0.5	7
44	Microstructure and Mechanical Properties of Cu-Ag-Zr Alloy. Journal of Materials Engineering and Performance, 2013, 22, 3884-3889.	1.2	29
45	Dynamic Embrittlement in Cu-Cr-Zr-Ti Alloy: Evidence of Intergranular Segregation of Sulphur. Journal of Materials Engineering and Performance, 2013, 22, 2331-2336.	1.2	16
46	Microstructure and Properties of a High-Strength Cu-Ni-Si-Co-Zr Alloy. Journal of Materials Engineering and Performance, 2013, 22, 2115-2120.	1.2	48
47	Effect of Chromium and Niobium on the Kinetics of Synthesis of Titanium Aluminide. Metal Science and Heat Treatment, 2013, 55, 438-444.	0.2	3
48	Failure analysis of a high strength low alloy 0.15C–1.25Cr–1Mo–0.25V steel pressure vessel. Case Studies in Engineering Failure Analysis, 2013, 1, 265-272.	1.2	3
49	Processing and characterization of Al–Cu–Li alloy AA2195 undergoing scale up production through the vacuum induction melting technique. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 576, 21-28.	2.6	58
50	Deformation behaviour of γ+α2 Ti aluminide processed through reaction synthesis. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 559, 49-67.	2.6	12
51	On the Prediction of Strength from Hardness for Copper Alloys. Journal of Materials, 2013, 2013, 1-6.	0.1	25
52	Hot Working of Ti Aluminide Made through Reaction Synthesis. Materials Science Forum, 2012, 710, 137-142.	0.3	0
53	Development and Characterization of Ti5Al2.5Sn-ELI Alloy Hemispherical Domes for High-Pressure Cold Helium Tanks. Materials Science Forum, 2012, 710, 113-118.	0.3	4
54	Effect of Cold Working and Heat Treatment on Recrystallization, Mechanical Properties and Microstructure of High Strength Ti15V3Al3Cr3Sn (Ti-Beta) Alloy. Materials Science Forum, 2012, 710, 521-526.	0.3	2

#	Article	IF	CITATIONS
55	Hot workability of γ+α2 titanium aluminide: Development of processing map and constitutive equations. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 551, 169-186.	2.6	44
56	Differential scanning calorimetry and reaction kinetics studies of γÂ+Âα2 Ti aluminide. Materials Chemistry and Physics, 2012, 137, 483-492.	2.0	8
57	Thermal Conductivity of Cu-Cr-Zr-Ti Alloy in the Temperature Range of 300–873 K. ISRN Metallurgy, 2012, 2012, 1-4.	0.7	10
58	Study on Ductility of Ti Aluminides Using Mamdani Fuzzy Inference System. Advances in Intelligent and Soft Computing, 2012, , 11-22.	0.2	1
59	Study on Ductility of Ti Aluminide Using Artificial Neural Network. International Journal of Aerospace Engineering, 2011, 2011, 1-7.	0.5	0
60	Development of TiB2 reinforced in-situ Ti aluminide matrix composite through reaction synthesis. Transactions of the Indian Institute of Metals, 2010, 63, 715-718.	0.7	4
61	Ductility prediction of Ti aluminide intermetallics through neuro-fuzzy set approach. Transactions of the Indian Institute of Metals, 2010, 63, 833-839.	0.7	2
62	Effect of Pressure and Temperature on Phase Transformation and Properties of Titanium Aluminide Obtained through Reaction Synthesis. Journal of Materials Science and Technology, 2010, 26, 693-704.	5.6	13
63	Evaluation of Ti Aluminide Intermetallics Processed Through Reaction Synthesis. High Temperature Materials and Processes, 2009, 28, 121-132.	0.6	7
64	Study on Generation of Fine Grained Titanium Aluminide Through Ball Milling of Ti, Al and Ni-P Coated Graphite Powder. Advanced Materials Research, 2009, 67, 45-51.	0.3	0
65	Microstructure and Mechanical Properties of Gas-Tungsten-Arc–Welded Ti-15-3 Beta Titanium Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2009, 40, 2685-2693.	1.1	15
66	Reaction kinetics studies on Ti-Al-Cr-Nb-B intermetallics. Transactions of the Indian Institute of Metals, 2009, 62, 21-24.	0.7	1
67	Investigation of ultrasonic indications in Ti alloy (Ti6Al4V) hot formed hemisphere. Engineering Failure Analysis, 2007, 14, 1286-1293.	1.8	4
68	Failure analysis of a Ti–6Al–4V gas bottle. Engineering Failure Analysis, 2006, 13, 843-856.	1.8	13
69	Correlation of Mechanical Properties with Ferrite Number in 0.07C-16Cr-6Ni Stainless Steel. Materials Science Forum, 0, 710, 495-499.	0.3	0
70	Age-Hardening Characteristics of Cu-3Ag-0.5Zr Alloy. Materials Science Forum, 0, 710, 563-568.	0.3	7
71	Effect of Ti Particle Size on Reaction Synthesis of Ti Aluminide. Materials Science Forum, 0, 710, 314-319.	0.3	1
72	Effect of Post Weld Heat Treatment on Mechanical Properties and Microstructure of Nickel Based Super Alloy Welds. Advanced Materials Research, 0, 585, 435-439.	0.3	2

#	Article	IF	CITATIONS
73	Effect of Simulated Brazing Cycle on the Microstructure and Mechanical Properties of Cu-Cr-Zr-Ti Alloy. Materials Science Forum, 0, 710, 626-631.	0.3	16
74	Heat-Treatment Studies on Dissimilar Ti-Alloy EB Weld Joints. Advanced Materials Research, 0, 585, 445-449.	0.3	0