Stéphanie Plenchette

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9328320/publications.pdf

Version: 2024-02-01

24 papers 1,201 citations

687363 13 h-index 713466 21 g-index

26 all docs

26 docs citations

26 times ranked 1995 citing authors

#	Article	IF	Citations
1	Nitric Oxide-Releasing Drug Glyceryl Trinitrate Targets JAK2/STAT3 Signaling, Migration and Invasion of Triple-Negative Breast Cancer Cells. International Journal of Molecular Sciences, 2021, 22, 8449.	4.1	10
2	Senescence and Cancer: Role of Nitric Oxide (NO) in SASP. Cancers, 2020, 12, 1145.	3.7	14
3	Protein kinase inhibitor-based cancer therapies: Considering the potential of nitric oxide (NO) to improve cancer treatment. Biochemical Pharmacology, 2020, 176, 113855.	4.4	11
4	Glyceryl trinitrateâ€'induced cytotoxicity of docetaxelâ€'resistant prostatic cancer cells is associated with differential regulation of clusterin. International Journal of Oncology, 2019, 54, 1446-1456.	3.3	4
5	S-Nitrosylation of cIAP1 Switches Cancer Cell Fate from TNFα/TNFR1-Mediated Cell Survival to Cell Death. Cancer Research, 2018, 78, 1948-1957.	0.9	32
6	Exploration of Fas S-Nitrosylation by the Biotin Switch Assay. Methods in Molecular Biology, 2017, 1557, 199-206.	0.9	3
7	Precision medicine in breast cancer: reality or utopia?. Journal of Translational Medicine, 2017, 15, 139.	4.4	56
8	Nitric Oxide and Platinum-Derivative-Based Regimens for Cancer Treatment: From Preclinical Studies to Clinical Trials., 2017, , 91-103.		2
9	IAPs: Mediators of Oncogenesis and Targets for Anticancer Therapy. Critical Reviews in Oncogenesis, 2016, 21, 399-411.	0.4	1
10	Role Of S-Nitrosylation In The Extrinsic Apoptotic Signalling Pathway In Cancer. Redox Biology, 2015, 5, 415.	9.0	5
11	S-nitrosylation in TNF superfamily signaling pathway: Implication in cancer. Redox Biology, 2015, 6, 507-515.	9.0	49
12	The Inhibitor of Apoptosis (IAPs) in Adaptive Response to Cellular Stress. Cells, 2012, 1, 711-737.	4.1	25
13	Cellular Inhibitor of Apoptosis Protein-1 (cIAP1) Can Regulate E2F1 Transcription Factor-mediated Control of Cyclin Transcription. Journal of Biological Chemistry, 2011, 286, 26406-26417.	3.4	40
14	The Mammalian IAPs: Multifaceted Inhibitors of Apoptosis., 2009,, 63-93.		0
15	The RING Domain of cIAP1 Mediates the Degradation of RING-bearing Inhibitor of Apoptosis Proteins by Distinct Pathways. Molecular Biology of the Cell, 2008, 19, 2729-2740.	2.1	48
16	Degradation of Survivin by the X-linked Inhibitor of Apoptosis (XIAP)-XAF1 Complex. Journal of Biological Chemistry, 2007, 282, 26202-26209.	3.4	138
17	Silencing of the XAF1 gene by promoter hypermethylation in cancer cells and reactivation to TRAIL-sensitization by IFN- \hat{l}^2 . BMC Cancer, 2007, 7, 52.	2.6	38
18	The role of XAF1 in cancer. Current Opinion in Investigational Drugs, 2007, 8, 469-76.	2.3	33

#	Article	IF	CITATIONS
19	Translocation of the inhibitor of apoptosis protein c-IAP1 from the nucleus to the Golgi in hematopoietic cells undergoing differentiation: a nuclear export signal-mediated event. Blood, 2004, 104, 2035-2043.	1.4	55
20	Analyzing Markers of Apoptosis In Vitro. , 2004, 281, 313-332.		15
21	Subcellular Expression of c-IAP1 and c-IAP2 in Colorectal Cancers: Relationships with Clinicopathological Features and Prognosis. Pathology Research and Practice, 2003, 199, 723-731.	2.3	24
22	HSP27 Is a Ubiquitin-Binding Protein Involved in I-κBα Proteasomal Degradation. Molecular and Cellular Biology, 2003, 23, 5790-5802.	2.3	301
23	CELL DEATH PATHWAYS AS TARGETS FOR ANTICANCER DRUGS. , 2002, , 55-76.		3
24	Specific involvement of caspases in the differentiation of monocytes into macrophages. Blood, 2002, 100, 4446-4453.	1.4	287