Yoshinori Akiyama

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9328143/publications.pdf

Version: 2024-02-01

18	648	12	18
papers	citations	h-index	g-index
18	18	18	581
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	FtsH (HflB) Is an ATP-dependent Protease Selectively Acting on SecY and Some Other Membrane Proteins. Journal of Biological Chemistry, 1996, 271, 31196-31201.	3.4	134
2	The Cpx stress response system of Escherichia colisenses plasma membrane proteins and controls HtpX, a membrane protease with a cytosolic active site. Genes To Cells, 2002, 7, 653-662.	1.2	102
3	The intramembrane active site of GlpG, an E.â \in f coli rhomboid protease, is accessible to water and hydrolyses an extramembrane peptide bond of substrates. Molecular Microbiology, 2007, 64, 435-447.	2.5	55
4	The Escherichia coli plasma membrane contains two PHB (prohibitin homology) domain protein complexes of opposite orientations. Molecular Microbiology, 2006, 60, 448-457.	2.5	47
5	Roles of the Periplasmic Domain of Escherichia coliFtsH (HflB) in Protein Interactions and Activity Modulation. Journal of Biological Chemistry, 1998, 273, 22326-22333.	3.4	44
6	Environment of the Active Site Region of RseP, an Escherichia coli Regulated Intramembrane Proteolysis Protease, Assessed by Site-directed Cysteine Alkylation. Journal of Biological Chemistry, 2007, 282, 4553-4560.	3.4	39
7	Roles of multimerization and membrane association in the proteolytic functions of FtsH (HflB). EMBO Journal, 2000, 19, 3888-3895.	7.8	38
8	Polypeptide binding of Escherichia coli FtsH (HflB). Molecular Microbiology, 2002, 28, 803-812.	2.5	36
9	Reconstitution of Membrane Proteolysis by FtsH. Journal of Biological Chemistry, 2003, 278, 18146-18153.	3.4	35
10	The TPR domain of BepA is required for productive interaction with substrate proteins and the βâ€barrel assembly machinery complex. Molecular Microbiology, 2017, 106, 760-776.	2.5	26
11	Involvement of a conserved <scp>GFG</scp> motif region in substrate binding by <scp>R</scp> se <scp>P</scp> , an <scp><i>E</i></scp> <i>scherichia coli</i> S2P protease. Molecular Microbiology, 2017, 104, 737-751.	2.5	18
12	Moving toward generalizable NZ-1 labeling for 3D structure determination with optimized epitope-tag insertion. Acta Crystallographica Section D: Structural Biology, 2021, 77, 645-662.	2.3	18
13	The Escherichia coli S2P intramembrane protease RseP regulates ferric citrate uptake by cleaving the sigma factor regulator FecR. Journal of Biological Chemistry, 2021, 296, 100673.	3.4	14
14	An <i>inÂvivo</i> protease activity assay for investigating the functions of the <i>EscherichiaÂcoli</i> membrane protease HtpX. FEBS Letters, 2019, 593, 842-851.	2.8	13
15	Structural Basis for the Function of the \hat{l}^2 -Barrel Assembly-Enhancing Protease BepA. Journal of Molecular Biology, 2019, 431, 625-635.	4.2	12
16	Fine interaction profiling of VemP and mechanisms responsible for its translocation-coupled arrest-cancelation. ELife, 2020, 9, .	6.0	9
17	Reversible autoinhibitory regulation of Escherichia colimetallopeptidase BepA for selective \hat{l}^2 -barrel protein degradation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27989-27996.	7.1	4
18	Edge-strand of BepA interacts with immature LptD on the \hat{l}^2 -barrel assembly machine to direct it to onand off-pathways. ELife, 2021, 10, .	6.0	4