Maureen M Barr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9328020/publications.pdf

Version: 2024-02-01

109321 149698 4,365 56 57 35 citations h-index g-index papers 67 67 67 3474 citing authors all docs docs citations times ranked

#	Article	IF	Citations
1	Isolation, profiling, and tracking of extracellular vesicle cargo in Caenorhabditis elegans. Current Biology, 2022, 32, 1924-1936.e6.	3.9	22
2	The tubulin code specializes neuronal cilia for extracellular vesicle release. Developmental Neurobiology, 2021, 81, 231-252.	3.0	21
3	CCP1, a Tubulin Deglutamylase, Increases Survival of Rodent Spinal Cord Neurons following Glutamate-Induced Excitotoxicity. ENeuro, 2021, 8, ENEURO.0431-20.2021.	1.9	7
4	Sensory cilia act as a specialized venue for regulated extracellular vesicle biogenesis and signaling. Current Biology, 2021, 31, 3943-3951.e3.	3.9	41
5	Mutation of NEKL-4/NEK10 and TTLL genes suppress neuronal ciliary degeneration caused by loss of CCPP-1 deglutamylase function. PLoS Genetics, 2020, 16, e1009052.	3.5	15
6	Release and targeting of polycystin-2-carrying ciliary extracellular vesicles. Current Biology, 2020, 30, R755-R756.	3.9	35
7	What about the males? the <i>C. elegans</i> sexually dimorphic nervous system and a CRISPR-based tool to study males in a hermaphroditic species. Journal of Neurogenetics, 2020, 34, 323-334.	1.4	7
8	Ciliary Rab28 and the BBSome negatively regulate extracellular vesicle shedding. ELife, 2020, 9, .	6.0	46
9	Cell typeâ€specific structural plasticity of the ciliary transition zone in <i>C. elegans</i> . Biology of the Cell, 2019, 111, 95-107.	2.0	21
10	Sexual Dimorphism and Sex Differences in <i>Caenorhabditis elegans</i> Neuronal Development and Behavior. Genetics, 2018, 208, 909-935.	2.9	66
11	Cell–cell communication via ciliary extracellular vesicles: clues from model systems. Essays in Biochemistry, 2018, 62, 205-213.	4.7	53
12	Cell-Specific α-Tubulin Isotype Regulates Ciliary Microtubule Ultrastructure, Intraflagellar Transport, and Extracellular Vesicle Biology. Current Biology, 2017, 27, 968-980.	3.9	67
13	Glutamylation Regulates Transport, Specializes Function, and Sculpts the Structure of Cilia. Current Biology, 2017, 27, 3430-3441.e6.	3.9	67
14	Middle Age Has Its Advantages. PLoS Genetics, 2016, 12, e1006426.	3.5	2
15	Ciliary Extracellular Vesicles: Txt Msg Organelles. Cellular and Molecular Neurobiology, 2016, 36, 449-457.	3.3	64
16	The tubulin repertoire of <i>Caenorhabditis elegans </i> sensory neurons and its context†dependent role in process outgrowth. Molecular Biology of the Cell, 2016, 27, 3717-3728.	2.1	47
17	Kymographic Analysis of Transport in an Individual Neuronal Sensory Cilium in Caenorhabditis elegans. Methods in Molecular Biology, 2016, 1454, 107-122.	0.9	3
18	Myristoylated CIL-7 regulates ciliary extracellular vesicle biogenesis. Molecular Biology of the Cell, 2015, 26, 2823-2832.	2.1	53

#	Article	IF	Citations
19	Model Organisms in G Protein–Coupled Receptor Research. Molecular Pharmacology, 2015, 88, 596-603.	2.3	21
20	Cell-Specific Transcriptional Profiling of Ciliated Sensory Neurons Reveals Regulators of Behavior and Extracellular Vesicle Biogenesis. Current Biology, 2015, 25, 3232-3238.	3.9	75
21	A motor relay on ciliary tracks. Nature Cell Biology, 2015, 17, 1517-1519.	10.3	2
22	The nphp-2 and arl-13 Genetic Modules Interact to Regulate Ciliogenesis and Ciliary Microtubule Patterning in C. elegans. PLoS Genetics, 2014, 10, e1004866.	3.5	28
23	C.Âelegans Ciliated Sensory Neurons Release Extracellular Vesicles that Function in Animal Communication. Current Biology, 2014, 24, 519-525.	3.9	196
24	Emerging Roles of Extracellular Vesicles in the Nervous System. Journal of Neuroscience, 2014, 34, 15482-15489.	3.6	219
25	C. elegans male mating behavior. Seminars in Cell and Developmental Biology, 2014, 33, 1-2.	5.0	1
26	Mating behavior, male sensory cilia, and polycystins in Caenorhabditis elegans. Seminars in Cell and Developmental Biology, 2014, 33, 25-33.	5.0	28
27	Tomography gives a new dimension to an ancient organelle. ELife, 2014, 3, e02589.	6.0	0
28	Dauer-Specific Dendrite Arborization in C.Âelegans Is Regulated by KPC-1/Furin. Current Biology, 2013, 23, 1527-1535.	3.9	91
29	Regulation of tubulin glutamylation plays cell-specific roles in the function and stability of sensory cilia. Worm, 2012, 1, 155-159.	1.0	14
30	PDF-1 neuropeptide signaling modulates a neural circuit for mate-searching behavior in C. elegans. Nature Neuroscience, 2012, 15, 1675-1682.	14.8	103
31	Ciliogenesis in <i>Caenorhabditis elegans</i> requires genetic interactions between ciliary middle segment localized NPHP-2 (inversin) and transition zone-associated proteins. Journal of Cell Science, 2012, 125, 2592-603.	2.0	40
32	Kinesin-3 KLP-6 Regulates Intraflagellar Transport in Male-Specific Cilia of Caenorhabditis elegans. Current Biology, 2011, 21, 1239-1244.	3.9	69
33	The Tubulin Deglutamylase CCPP-1 Regulates the Function and Stability of Sensory Cilia in C.Âelegans. Current Biology, 2011, 21, 1685-1694.	3.9	99
34	Sperm Status Regulates Sexual Attraction in <i>Caenorhabditis elegans</i> . Genetics, 2011, 189, 1341-1346.	2.9	46
35	Functional Specialization of Sensory Cilia by an RFX Transcription Factor Isoform. Genetics, 2010, 186, 1295-1307.	2.9	32
36	The CIL-1 PI 5-Phosphatase Localizes TRP Polycystins to Cilia and Activates Sperm in C. elegans. Current Biology, 2009, 19, 1599-1607.	3.9	55

#	Article	IF	CITATIONS
37	Identification of genes involved in the ciliary trafficking of ⟨i⟩C. elegans⟨/i⟩ PKDâ€2. Developmental Dynamics, 2008, 237, 2021-2029.	1.8	29
38	Distinct protein domains regulate ciliary targeting and function of C. elegans PKD-2. Experimental Cell Research, 2008, 314, 825-833.	2.6	12
39	The <i>Caenorhabditis elegans</i> nephrocystins act as global modifiers of cilium structure. Journal of Cell Biology, 2008, 180, 973-988.	5.2	104
40	Sensory roles of neuronal cilia: Cilia development, morphogenesis, and function in C. elegans. Frontiers in Bioscience - Landmark, 2008, Volume, 5959.	3.0	58
41	FMRFamide-Like Neuropeptides and Mechanosensory Touch Receptor Neurons Regulate Male Sexual Turning Behavior in <i>Caenorhabditis elegans</i>	3.6	65
42	STAM and Hrs Down-Regulate Ciliary TRP Receptors. Molecular Biology of the Cell, 2007, 18, 3277-3289.	2.1	61
43	General and cell-type specific mechanisms target TRPP2/PKD-2 to cilia. Development (Cambridge), 2006, 133, 3859-3870.	2.5	95
44	Casein Kinase II and Calcineurin Modulate TRPP Function and Ciliary Localization. Molecular Biology of the Cell, 2006, 17, 2200-2211.	2.1	69
45	Male mating behavior. WormBook, 2006, , 1-11.	5.3	90
46	The KLP-6 Kinesin Is Required for Male Mating Behaviors and Polycystin Localization in Caenorhabditis elegans. Current Biology, 2005, 15, 394-404.	3.9	120
47	Intraflagellar Transport Is Required for the Vectorial Movement of TRPV Channels in the Ciliary Membrane. Current Biology, 2005, 15, 1695-1699.	3.9	183
48	RNA Interference in Caenorhabditis elegans. Methods in Enzymology, 2005, 392, 36-55.	1.0	45
49	Caenorhabditis elegansas a Model to Study Renal Development and Disease: Sexy Cilia. Journal of the American Society of Nephrology: JASN, 2005, 16, 305-312.	6.1	46
50	Functional characterization of the C. elegans nephrocystins NPHP-1 and NPHP-4 and their role in cilia and male sensory behaviors. Experimental Cell Research, 2005, 305, 333-342.	2.6	55
51	Super models. Physiological Genomics, 2003, 13, 15-24.	2.3	68
52	An autosomal recessive polycystic kidney disease gene homolog is involved in intraflagellar transport in C. elegans ciliated sensory neurons. Current Biology, 2001, 11, 457-461.	3.9	214
53	The Caenorhabditis elegans autosomal dominant polycystic kidney disease gene homologs lov-1 and pkd-2 act in the same pathway. Current Biology, 2001, 11, 1341-1346.	3.9	293
54	A polycystic kidney-disease gene homologue required for male mating behaviour in C. elegans. Nature, 1999, 401, 386-389.	27.8	475

#	Article	IF	CITATIONS
55	Title is missing!. Nature, 1999, 401, 386-389.	27.8	209
56	Cooperative interaction of S. pombe proteins required for mating and morphogenesis. Cell, 1994, 79, 131-141.	28.9	300
57	Sensory Cilia Act as a Specialized Venue for Regulated Extracellular Vesicle Biogenesis and Signaling. SSRN Electronic Journal, 0, , .	0.4	2