Pierre Marcotte

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9327970/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A methodology for integrated performance analyses of vibration reducing gloves. International Journal of Industrial Ergonomics, 2021, 85, 103174.	2.6	1
2	Whole-body vibration biodynamics - a critical review: II. Biodynamic modelling. International Journal of Vehicle Performance, 2020, 6, 52.	0.4	5
3	Whole-body vibration biodynamics - a critical review: I. Experimental biodynamics. International Journal of Vehicle Performance, 2020, 6, 1.	0.4	10
4	Assessing Increased Activities of the Forearm Muscles Due to Anti-Vibration Gloves: Construct Validity of a Refined Methodology. Human Factors, 2020, , 001872082094830.	3.5	2
5	Distributed vibration isolation and manual dexterity of anti-vibration gloves: is there a correlation?. Ergonomics, 2020, 63, 735-755.	2.1	5
6	Whole-body vibration biodynamics - a critical review: I. Experimental biodynamics. International Journal of Vehicle Performance, 2020, 6, 1.	0.4	0
7	Relationship among hand forces imparted on a viscoelastic hand-handle interface. Measurement: Journal of the International Measurement Confederation, 2019, 145, 525-534.	5.0	6
8	Identification of noise sources using a time domain beamforming on pneumatic, gas and electric nail guns. Noise Control Engineering Journal, 2019, 67, 11-22.	0.3	3
9	Evaluation of effects of anti-vibration gloves on manual dexterity. Ergonomics, 2018, 61, 1530-1544.	2.1	12
10	Fingers vibration transmission performance of vibration reducing gloves. International Journal of Industrial Ergonomics, 2017, 62, 55-69.	2.6	14
11	Feasibility analysis of low-cost flexible resistive sensors for measurements of driving point mechanical impedance of the hand-arm system. International Journal of Industrial Ergonomics, 2015, 49, 44-52.	2.6	5
12	Effects of elastic seats on seated body apparent mass responses to vertical whole body vibration. Ergonomics, 2015, 58, 1175-1190.	2.1	13
13	Measurement of coupling forces at the power tool handle-hand interface. International Journal of Industrial Ergonomics, 2015, 50, 105-120.	2.6	18
14	Noise and vibration: Mine workers' exposure in Quebec underground mines. CIM Journal, 2015, 6, 111-117.	0.6	0
15	Noise: Assessment & amp; control. International Journal of Industrial Ergonomics, 2013, 43, 473.	2.6	0
16	Comparisons of apparent mass responses of human subjects seated on rigid and elastic seats under vertical vibration. Ergonomics, 2013, 56, 1806-1822.	2.1	18
17	Distributed vibration power absorption of the human hand-arm system in different postures coupled with vibrating handle and power tools. International Journal of Industrial Ergonomics, 2013, 43, 363-374.	2.6	11
18	Seated body apparent mass response to vertical whole body vibration: Gender and anthropometric effects. International Journal of Industrial Ergonomics, 2013, 43, 375-391.	2.6	27

PIERRE MARCOTTE

#	Article	IF	CITATIONS
19	Vertical and Fore-Aft Seat-to-Head Transmissibility Response to Vertical Whole Body Vibration: Gender and Anthropometric Effects. Journal of Low Frequency Noise Vibration and Active Control, 2013, 32, 11-40.	2.9	14
20	Vibration of portable orbital sanders and its impact on the development of work-related musculoskeletal disorders in the furniture industry. Computers and Industrial Engineering, 2012, 62, 762-769.	6.3	13
21	Biomechanical models of the human hand-arm to simulate distributed biodynamic responses for different postures. International Journal of Industrial Ergonomics, 2012, 42, 249-260.	2.6	42
22	Analyses of biodynamic responses of seated occupants to uncorrelated fore-aft and vertical whole-body vibration. Journal of Sound and Vibration, 2011, 330, 4064-4079.	3.9	30
23	Development of a hand–arm mechanical analogue for evaluating chipping hammer vibration emission values. Journal of Sound and Vibration, 2010, 329, 1968-1980.	3.9	12
24	Vibration transmissibility characteristics of the human hand–arm system under different postures, hand forces and excitation levels. Journal of Sound and Vibration, 2010, 329, 2953-2971.	3.9	67
25	Biodynamics of the human body under whole-body vibration: Synthesis of the reported data. International Journal of Industrial Ergonomics, 2010, 40, 710-732.	2.6	97
26	Design and Evaluation of a Suspension Seat to Reduce Vibration Exposure of Subway Operators: A Case Study. Industrial Health, 2010, 48, 715-724.	1.0	3
27	Vibration of portable orbital sanders and its impact on the development of work-related musculoskeletal disorders in the furniture industry. , 2010, , .		0
28	Comparing Three Methods for Evaluating Impact Wrench Vibration Emissions. Annals of Occupational Hygiene, 2009, 53, 617-26.	1.9	13
29	Comments on "A discussion on comparing alternative measures with frequency-weighted accelerations defined in ISO Standards―[R.G. Dong, J.Z. Wu, D.E. Welcome, T.W. McDowell, Journal of Sound and Vibration]. Journal of Sound and Vibration, 2008, 317, 1051-1056.	3.9	0
30	On the discrepancies in the reported human hand–arm impedance at higher frequencies. International Journal of Industrial Ergonomics, 2008, 38, 703-714.	2.6	17
31	Influence of hand forces and handle size on power absorption of the human hand–arm exposed to zh-axis vibration. Journal of Sound and Vibration, 2006, 290, 1015-1039.	3.9	23
32	Influence of hand–arm posture on biodynamic response of the human hand–arm exposed to zh-axis vibration. International Journal of Industrial Ergonomics, 2006, 36, 45-59.	2.6	55
33	Effect of handle size and hand–handle contact force on the biodynamic response of the hand–arm system under zh-axis vibration. Journal of Sound and Vibration, 2005, 283, 1071-1091.	3.9	75
34	Mechanical Impedance and Absorbed Power of Hand-Arm under xh-Axis Vibration and Role of Hand Forces and Posture. Industrial Health, 2005, 43, 495-508.	1.0	28
35	Interior noise reduction of composite cylinders using distributed vibration absorbers. , 2001, , .		8
36	Aircraft cabin noise control with smart foam treatment on fuselage sidewall - Laboratory tests. , 2001, , .		0

#	Article	IF	CITATIONS
37	Optimization of distributed vibration absorbers for sound transmission into a composite cylinder. , 2001, , .		1
38	Analysis of Ride Vibration Environment of Soil Compactors. SAE International Journal of Commercial Vehicles, 0, 3, 259-272.	0.4	24