Carolyn R Bertozzi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9327521/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bioorthogonal Chemistry: Fishing for Selectivity in a Sea of Functionality. Angewandte Chemie - International Edition, 2009, 48, 6974-6998.	7.2	2,604
2	A Strain-Promoted [3 + 2] Azideâ^'Alkyne Cycloaddition for Covalent Modification of Biomolecules in Living Systems. Journal of the American Chemical Society, 2004, 126, 15046-15047.	6.6	2,276
3	Cell Surface Engineering by a Modified Staudinger Reaction. Science, 2000, 287, 2007-2010.	6.0	2,109
4	Copper-free click chemistry for dynamic <i>in vivo</i> imaging. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 16793-16797.	3.3	1,587
5	Glycans in cancer and inflammation — potential for therapeutics and diagnostics. Nature Reviews Drug Discovery, 2005, 4, 477-488.	21.5	1,437
6	Cu-free click cycloaddition reactions in chemical biology. Chemical Society Reviews, 2010, 39, 1272.	18.7	1,410
7	Chemistry in living systems. Nature Chemical Biology, 2005, 1, 13-21.	3.9	1,290
8	Coadsorption of ferrocene-terminated and unsubstituted alkanethiols on gold: electroactive self-assembled monolayers. Journal of the American Chemical Society, 1990, 112, 4301-4306.	6.6	987
9	In Vivo Imaging of Membrane-Associated Glycans in Developing Zebrafish. Science, 2008, 320, 664-667.	6.0	913
10	From Mechanism to Mouse: A Tale of Two Bioorthogonal Reactions. Accounts of Chemical Research, 2011, 44, 666-676.	7.6	893
11	Incorporation of azides into recombinant proteins for chemoselective modification by the Staudinger ligation. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 19-24.	3.3	855
12	Symbol Nomenclature for Graphical Representations of Glycans. Glycobiology, 2015, 25, 1323-1324.	1.3	818
13	Synthesis, Characterization, and Theory of [9]-, [12]-, and [18]Cycloparaphenylene: Carbon Nanohoop Structures. Journal of the American Chemical Society, 2008, 130, 17646-17647.	6.6	812
14	Chemical remodelling of cell surfaces in living animals. Nature, 2004, 430, 873-877.	13.7	722
15	Engineering Chemical Reactivity on Cell Surfaces Through Oligosaccharide Biosynthesis. Science, 1997, 276, 1125-1128.	6.0	720
16	A Comparative Study of Bioorthogonal Reactions with Azides. ACS Chemical Biology, 2006, 1, 644-648.	1.6	647
17	The cancer glycocalyx mechanically primes integrin-mediated growth and survival. Nature, 2014, 511, 319-325.	13.7	610
18	A "Traceless―Staudinger Ligation for the Chemoselective Synthesis of Amide Bonds. Organic Letters, 2000, 2, 2141-2143.	2.4	592

#	Article	IF	CITATIONS
19	Rapid Cu-Free Click Chemistry with Readily Synthesized Biarylazacyclooctynones. Journal of the American Chemical Society, 2010, 132, 3688-3690.	6.6	591
20	How many human proteoforms are there?. Nature Chemical Biology, 2018, 14, 206-214.	3.9	580
21	Copper-free click chemistry in living animals. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1821-1826.	3.3	560
22	Lipid-droplet-accumulating microglia represent a dysfunctional and proinflammatory state in the aging brain. Nature Neuroscience, 2020, 23, 194-208.	7.1	558
23	Boron Nitride Nanotubes Are Noncytotoxic and Can Be Functionalized for Interaction with Proteins and Cells. Journal of the American Chemical Society, 2009, 131, 890-891.	6.6	522
24	A chemical approach for identifying O-GlcNAc-modified proteins in cells. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9116-9121.	3.3	496
25	Lysosome-targeting chimaeras for degradation of extracellular proteins. Nature, 2020, 584, 291-297.	13.7	489
26	Second-Generation Difluorinated Cyclooctynes for Copper-Free Click Chemistry. Journal of the American Chemical Society, 2008, 130, 11486-11493.	6.6	482
27	Site-Specific Antibody–Drug Conjugates: The Nexus of Bioorthogonal Chemistry, Protein Engineering, and Drug Development. Bioconjugate Chemistry, 2015, 26, 176-192.	1.8	476
28	A metabolic labeling approach toward proteomic analysis of mucin-type O-linked glycosylation. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 14846-14851.	3.3	470
29	The selectins and their ligands. Current Opinion in Cell Biology, 1994, 6, 663-673.	2.6	455
30	Introducing genetically encoded aldehydes into proteins. Nature Chemical Biology, 2007, 3, 321-322.	3.9	411
31	Glycocalyx engineering reveals a Siglec-based mechanism for NK cell immunoevasion. Nature Chemical Biology, 2014, 10, 69-75.	3.9	390
32	Fmoc-Based Synthesis of Peptide-αThioesters: Application to the Total Chemical Synthesis of a Glycoprotein by Native Chemical Ligation. Journal of the American Chemical Society, 1999, 121, 11684-11689.	6.6	368
33	A cell nanoinjector based on carbon nanotubes. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8218-8222.	3.3	366
34	In vivo imaging of hydrogen peroxide production in a murine tumor model with a chemoselective bioluminescent reporter. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21316-21321.	3.3	356
35	Redirecting lipoic acid ligase for cell surface protein labeling with small-molecule probes. Nature Biotechnology, 2007, 25, 1483-1487.	9.4	340
36	Precision glycocalyx editing as a strategy for cancer immunotherapy. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10304-10309.	3.3	328

#	Article	IF	CITATIONS
37	Mechanistic Investigation of the Staudinger Ligation. Journal of the American Chemical Society, 2005, 127, 2686-2695.	6.6	323
38	Imaging the glycome. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12-17.	3.3	321
39	Conjugation of DNA to Silanized Colloidal Semiconductor Nanocrystalline Quantum Dots. Chemistry of Materials, 2002, 14, 2113-2119.	3.2	312
40	Metabolic cross-talk allows labeling of O-linked β- <i>N</i> -acetylglucosamine-modified proteins via the <i>N</i> -acetylgalactosamine salvage pathway. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 3141-3146.	3.3	301
41	Interfacing Carbon Nanotubes with Living Cells. Journal of the American Chemical Society, 2006, 128, 6292-6293.	6.6	290
42	CD22 blockade restores homeostatic microglial phagocytosis in ageing brains. Nature, 2019, 568, 187-192.	13.7	283
43	The chemistry and biology of mucin-type O-linked glycosylation. Bioorganic and Medicinal Chemistry, 2005, 13, 5021-5034.	1.4	272
44	Investigating Cellular Metabolism of Synthetic Azidosugars with the Staudinger Ligation. Journal of the American Chemical Society, 2002, 124, 14893-14902.	6.6	270
45	Cholesterol Catabolism by Mycobacterium tuberculosis Requires Transcriptional and Metabolic Adaptations. Chemistry and Biology, 2012, 19, 218-227.	6.2	270
46	Programmed assembly of 3-dimensional microtissues with defined cellular connectivity. Proceedings of the United States of America, 2009, 106, 4606-4610.	3.3	269
47	Metabolic labeling of glycans with azido sugars and subsequent glycan-profiling and visualization via Staudinger ligation. Nature Protocols, 2007, 2, 2930-2944.	5.5	261
48	Strategy for Dual-Analyte Luciferin Imaging: <i>In Vivo</i> Bioluminescence Detection of Hydrogen Peroxide and Caspase Activity in a Murine Model of Acute Inflammation. Journal of the American Chemical Society, 2013, 135, 1783-1795.	6.6	261
49	Small RNAs are modified with N-glycans and displayed on the surface of living cells. Cell, 2021, 184, 3109-3124.e22.	13.5	260
50	Metabolic oligosaccharide engineering as a tool for glycobiology. Current Opinion in Chemical Biology, 2003, 7, 616-625.	2.8	252
51	A New Approach to Mineralization of Biocompatible Hydrogel Scaffolds:Â An Efficient Process toward 3-Dimensional Bonelike Composites. Journal of the American Chemical Society, 2003, 125, 1236-1243.	6.6	245
52	Physiological blood–brain transport is impaired with age by a shift in transcytosis. Nature, 2020, 583, 425-430.	13.7	243
53	A Hydrophilic Azacyclooctyne for Cu-Free Click Chemistry. Organic Letters, 2008, 10, 3097-3099.	2.4	241
54	lsotope-targeted glycoproteomics (IsoTaG): a mass-independent platform for intact N- and O-glycopeptide discovery and analysis. Nature Methods, 2015, 12, 561-567.	9.0	238

#	Article	IF	CITATIONS
55	MmpL8 is required for sulfolipid-1 biosynthesis and Mycobacterium tuberculosis virulence. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 6121-6126.	3.3	237
56	Reactivity of Biarylazacyclooctynones in Copper-Free Click Chemistry. Journal of the American Chemical Society, 2012, 134, 9199-9208.	6.6	229
57	A Decade of Bioorthogonal Chemistry. Accounts of Chemical Research, 2011, 44, 651-653.	7.6	227
58	<scp>d</scp> -Amino Acid Chemical Reporters Reveal Peptidoglycan Dynamics of an Intracellular Pathogen. ACS Chemical Biology, 2013, 8, 500-505.	1.6	225
59	Site-specific chemical modification of recombinant proteins produced in mammalian cells by using the genetically encoded aldehyde tag. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3000-3005.	3.3	224
60	Tyrosine sulfation: a modulator of extracellular protein–protein interactions. Chemistry and Biology, 2000, 7, R57-R61.	6.2	219
61	Site-specific chemical protein conjugation using genetically encoded aldehyde tags. Nature Protocols, 2012, 7, 1052-1067.	5.5	218
62	Chemical Glycoproteomics. Chemical Reviews, 2016, 116, 14277-14306.	23.0	218
63	Integrated microfluidic bioprocessor for single-cell gene expression analysis. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20173-20178.	3.3	216
64	Progress and challenges for the bottom-up synthesis of carbon nanotubes with discrete chirality. Chemical Physics Letters, 2010, 494, 1-7.	1.2	213
65	The clinical impact of glycobiology: targeting selectins, Siglecs and mammalian glycans. Nature Reviews Drug Discovery, 2021, 20, 217-243.	21.5	213
66	LYTACs that engage the asialoglycoprotein receptor for targeted protein degradation. Nature Chemical Biology, 2021, 17, 937-946.	3.9	211
67	Mineralization of Synthetic Polymer Scaffolds:Â A Bottom-Up Approach for the Development of Artificial Bone. Journal of the American Chemical Society, 2005, 127, 3366-3372.	6.6	203
68	Probing mucin-type O-linked glycosylation in living animals. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4819-4824.	3.3	198
69	Chemical Technologies for Probing Glycans. Cell, 2006, 126, 851-854.	13.5	196
70	Synthetic glycopeptides and glycoproteins as tools for biology. Chemical Society Reviews, 2005, 34, 58.	18.7	195
71	Metabolic Labeling of Sialic Acids in Living Animals with Alkynyl Sugars. Angewandte Chemie - International Edition, 2009, 48, 4030-4033.	7.2	195
72	Design strategies for bioorthogonal smart probes. Organic and Biomolecular Chemistry, 2014, 12, 9307-9320.	1.5	195

#	Article	IF	CITATIONS
73	Glycotherapy: New Advances Inspire a Reemergence of Glycans in Medicine. Chemistry and Biology, 2014, 21, 16-37.	6.2	194
74	A Fluorogenic Dye Activated by the Staudinger Ligation. Journal of the American Chemical Society, 2003, 125, 4708-4709.	6.6	192
75	Targeted glycan degradation potentiates the anticancer immune response in vivo. Nature Chemical Biology, 2020, 16, 1376-1384.	3.9	192
76	Bringing chemistry to life. Nature Methods, 2011, 8, 638-642.	9.0	189
77	Physical Principles of Membrane Shape Regulation by the Glycocalyx. Cell, 2019, 177, 1757-1770.e21.	13.5	187
78	The mucin-selective protease StcE enables molecular and functional analysis of human cancer-associated mucins. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7278-7287.	3.3	186
79	Lipidomics reveals control of Mycobacterium tuberculosis virulence lipids via metabolic coupling. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5133-5138.	3.3	185
80	Noncovalent Cell Surface Engineering: Incorporation of Bioactive Synthetic Glycopolymers into Cellular Membranes. Journal of the American Chemical Society, 2008, 130, 5947-5953.	6.6	185
81	A Pictet-Spengler ligation for protein chemical modification. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 46-51.	3.3	183
82	Imaging Cell Surface Glycans with Bioorthogonal Chemical Reporters. Journal of the American Chemical Society, 2007, 129, 8400-8401.	6.6	182
83	Metabolic Delivery of Ketone Groups to Sialic Acid Residues. Journal of Biological Chemistry, 1998, 273, 31168-31179.	1.6	180
84	Synthetic Riboswitches That Induce Gene Expression in Diverse Bacterial Species. Applied and Environmental Microbiology, 2010, 76, 7881-7884.	1.4	180
85	Imaging bacterial peptidoglycan with near-infrared fluorogenic azide probes. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5456-5461.	3.3	178
86	Chemoselective Approaches to Glycoprotein Assembly. Accounts of Chemical Research, 2001, 34, 727-736.	7.6	173
87	Transmembrane Pickets Connect Cyto- and Pericellular Skeletons Forming Barriers to Receptor Engagement. Cell, 2018, 172, 305-317.e10.	13.5	170
88	Discovery of aminoacyl-tRNA synthetase activity through cell-surface display of noncanonical amino acids. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10180-10185.	3.3	167
89	Programmable Cell Adhesion Encoded by DNA Hybridization. Angewandte Chemie - International Edition, 2006, 45, 896-901.	7.2	165
90	Integrins Form an Expanding Diffusional Barrier that Coordinates Phagocytosis. Cell, 2016, 164, 128-140.	13.5	163

#	Article	IF	CITATIONS
91	Symbol nomenclature for glycan representation. Proteomics, 2009, 9, 5398-5399.	1.3	162
92	Self-catalyzed growth of S layers via an amorphous-to-crystalline transition limited by folding kinetics. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 16536-16541.	3.3	160
93	Subpolar addition of new cell wall is directed by DivIVA in mycobacteria. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3243-51.	3.3	159
94	Optimal Dissociation Methods Differ for <i>N</i> - and <i>O</i> -Glycopeptides. Journal of Proteome Research, 2020, 19, 3286-3301.	1.8	153
95	Homogeneous Glycopeptides and Glycoproteins for Biological Investigation. Annual Review of Biochemistry, 2002, 71, 593-634.	5.0	152
96	A Chemical Reporter Strategy to Probe Glycoprotein Fucosylation. Journal of the American Chemical Society, 2006, 128, 12078-12079.	6.6	152
97	Probing the Mycobacterial Trehalome with Bioorthogonal Chemistry. Journal of the American Chemical Society, 2012, 134, 16123-16126.	6.6	151
98	Exploiting Differences in Sialoside Expression for Selective Targeting of MRI Contrast Reagents. Journal of the American Chemical Society, 1999, 121, 4278-4279.	6.6	150
99	Chemical Approaches To Perturb, Profile, and Perceive Glycans. Accounts of Chemical Research, 2009, 42, 788-797.	7.6	147
100	Visualizing enveloping layer glycans during zebrafish early embryogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10360-10365.	3.3	146
101	Inhibition of NGLY1 Inactivates the Transcription Factor Nrf1 and Potentiates Proteasome Inhibitor Cytotoxicity. ACS Central Science, 2017, 3, 1143-1155.	5.3	146
102	Carbohydrate sulfotransferases: mediators of extracellular communication. Chemistry and Biology, 1999, 6, R9-R22.	6.2	145
103	Synthesis of Glycopolymers for Microarray Applications via Ligation of Reducing Sugars to a Poly(acryloyl hydrazide) Scaffold. Journal of the American Chemical Society, 2010, 132, 9963-9965.	6.6	143
104	Discovery and functional interrogation of SARS-CoV-2 RNA-host protein interactions. Cell, 2021, 184, 2394-2411.e16.	13.5	141
105	Density Variant Glycan Microarray for Evaluating Cross-Linking of Mucin-like Glycoconjugates by Lectins. Journal of the American Chemical Society, 2012, 134, 15732-15742.	6.6	140
106	Synthesis of Heterobifunctional Protein Fusions Using Copperâ€Free Click Chemistry and the Aldehyde Tag. Angewandte Chemie - International Edition, 2012, 51, 4161-4165.	7.2	140
107	CalFluors: A Universal Motif for Fluorogenic Azide Probes across the Visible Spectrum. Journal of the American Chemical Society, 2015, 137, 7145-7151.	6.6	140
108	Formylglycine, a Post-Translationally Generated Residue with Unique Catalytic Capabilities and Biotechnology Applications. ACS Chemical Biology, 2015, 10, 72-84.	1.6	138

#	Article	IF	CITATIONS
109	Mapping and Quantification of Over 2000 O-linked Glycopeptides in Activated Human T Cells with Isotope-Targeted Glycoproteomics (Isotag). Molecular and Cellular Proteomics, 2018, 17, 764-775.	2.5	138
110	New Directions in the Synthesis of Glycopeptide Mimetics. Chemistry - A European Journal, 1999, 5, 1384-1390.	1.7	137
111	<i>In Vivo</i> Imaging of <i>Caenorhabditis elegans</i> Glycans. ACS Chemical Biology, 2009, 4, 1068-1072.	1.6	136
112	Direct Cell Surface Modification with DNA for the Capture of Primary Cells and the Investigation of Myotube Formation on Defined Patterns. Langmuir, 2009, 25, 6985-6991.	1.6	135
113	Liveâ€Cell Imaging of Cellular Proteins by a Strainâ€Promoted Azide–Alkyne Cycloaddition. ChemBioChem, 2010, 11, 2092-2095.	1.3	135
114	Increasing intracellular trehalose is sufficient to confer desiccation tolerance to <i>Saccharomyces cerevisiae</i> . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6122-6127.	3.3	135
115	Leukocyte adhesion: Two selectins converge on sulphate. Current Biology, 1996, 6, 261-264.	1.8	134
116	Fluorogenic Azidofluoresceins for Biological Imaging. Journal of the American Chemical Society, 2012, 134, 17428-17431.	6.6	129
117	Metabolic labeling enables selective photocrosslinking of O-GlcNAc-modified proteins to their binding partners. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4834-4839.	3.3	127
118	Control of Cell Adhesion and Growth with Micropatterned Supported Lipid Membranes. Langmuir, 2001, 17, 5129-5133.	1.6	126
119	Probing Glycosyltransferase Activities with the Staudinger Ligation. Journal of the American Chemical Society, 2004, 126, 6-7.	6.6	124
120	Expanding the Diversity of Unnatural Cell-Surface Sialic Acids. ChemBioChem, 2004, 5, 371-374.	1.3	123
121	Illumination of growth, division and secretion by metabolic labeling of the bacterial cell surface. FEMS Microbiology Reviews, 2015, 39, 184-202.	3.9	123
122	A Pragmatic Guide to Enrichment Strategies for Mass Spectrometry–Based Glycoproteomics. Molecular and Cellular Proteomics, 2021, 20, 100029.	2.5	121
123	Ketone Isosteres of 2-N-Acetamidosugars as Substrates for Metabolic Cell Surface Engineering. Journal of the American Chemical Society, 2001, 123, 1242-1243.	6.6	120
124	Metabolic Labeling of Glycans with Azido Sugars for Visualization and Glycoproteomics. Methods in Enzymology, 2006, 415, 230-250.	0.4	120
125	Systemic Fluorescence Imaging of Zebrafish Glycans with Bioorthogonal Chemistry. Angewandte Chemie - International Edition, 2015, 54, 11504-11510.	7.2	120
126	Rapid detection of <i>Mycobacterium tuberculosis</i> in sputum with a solvatochromic trehalose probe. Science Translational Medicine, 2018, 10, .	5.8	119

#	Article	IF	CITATIONS
127	Fluorophore Targeting to Cellular Proteins via Enzyme-Mediated Azide Ligation and Strain-Promoted Cycloaddition. Journal of the American Chemical Society, 2012, 134, 3720-3728.	6.6	114
128	Substrate Specificity of the Sialic Acid Biosynthetic Pathwayâ€. Biochemistry, 2001, 40, 12864-12874.	1.2	113
129	The Ecstasy and Agony of Assay Interference Compounds. Journal of Medicinal Chemistry, 2017, 60, 2165-2168.	2.9	113
130	Chemical approaches to glycobiology and emerging carbohydrate-based therapeutic agents. Current Opinion in Chemical Biology, 1998, 2, 49-61.	2.8	110
131	Modular Assembly of Glycoproteins: Towards the Synthesis of GlyCAM-1 by Using Expressed Protein Ligation. Angewandte Chemie - International Edition, 2004, 43, 1355-1359.	7.2	110
132	Sulfotransferases and Sulfatases in Mycobacteria. Chemistry and Biology, 2002, 9, 767-776.	6.2	109
133	A Strategy for the Chemoselective Synthesis ofO-Linked Glycopeptides with Native Sugarâ^'Peptide Linkages. Journal of the American Chemical Society, 1997, 119, 9905-9906.	6.6	108
134	Biomimetic Engineering of Carbon Nanotubes by Using Cell Surface Mucin Mimics. Angewandte Chemie - International Edition, 2004, 43, 6111-6116.	7.2	107
135	Difluorobenzocyclooctyne: Synthesis, Reactivity, and Stabilization by β-Cyclodextrin. Journal of the American Chemical Society, 2010, 132, 11799-11805.	6.6	106
136	Aminooxy-, Hydrazide-, and Thiosemicarbazide-Functionalized Saccharides:Â Versatile Reagents for Glycoconjugate Synthesis. Journal of Organic Chemistry, 1998, 63, 7134-7135.	1.7	105
137	A Small-Molecule Modulator of Poly-alpha 2,8-Sialic Acid Expression on Cultured Neurons and Tumor Cells. Science, 2001, 294, 380-381.	6.0	105
138	Anti-GD2 synergizes with CD47 blockade to mediate tumor eradication. Nature Medicine, 2022, 28, 333-344.	15.2	105
139	Chemical and Biological Strategies for Engineering Cell Surface Glycosylation. Annual Review of Cell and Developmental Biology, 2001, 17, 1-23.	4.0	104
140	Functional Self-Assembling Bolaamphiphilic Polydiacetylenes as Colorimetric Sensor Scaffolds. Journal of the American Chemical Society, 2004, 126, 8459-8465.	6.6	104
141	A tension-mediated glycocalyx–integrin feedback loop promotes mesenchymal-like glioblastoma. Nature Cell Biology, 2018, 20, 1203-1214.	4.6	103
142	5'-Adenosinephosphosulphate reductase (CysH) protects Mycobacterium tuberculosis against free radicals during chronic infection phase in mice. Molecular Microbiology, 2006, 59, 1744-1753.	1.2	102
143	Rapid and selective detection of fatty acylated proteins using ï‰-alkynyl-fatty acids and click chemistry. Journal of Lipid Research, 2010, 51, 1566-1580.	2.0	101
144	Trehalose Is Required for Growth of Mycobacterium smegmatis. Journal of Biological Chemistry, 2004, 279, 28835-28843.	1.6	100

#	Article	IF	CITATIONS
145	Identification, function and structure of the mycobacterial sulfotransferase that initiates sulfolipid-1 biosynthesis. Nature Structural and Molecular Biology, 2004, 11, 721-729.	3.6	100
146	DNA origami protection and molecular interfacing through engineered sequence-defined peptoids. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6339-6348.	3.3	99
147	Carbon-linked galactosphingolipid analogs bind specifically to HIV-1 gp120. Journal of the American Chemical Society, 1992, 114, 10639-10641.	6.6	98
148	O-Pair Search with MetaMorpheus for O-glycopeptide characterization. Nature Methods, 2020, 17, 1133-1138.	9.0	98
149	Chemical Synthesis of Lymphotactin: A Glycosylated Chemokine with a C-Terminal Mucin-Like Domain. Chemistry - A European Journal, 2001, 7, 1129-1132.	1.7	97
150	Function and Structure of a Prokaryotic Formylglycine-generating Enzyme. Journal of Biological Chemistry, 2008, 283, 20117-20125.	1.6	97
151	Membrane proteomics of phagosomes suggests a connection to autophagy. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16952-16957.	3.3	96
152	Selective Enrichment of Azide-Containing Peptides from Complex Mixtures. Journal of Proteome Research, 2009, 8, 3702-3711.	1.8	96
153	The roles of enzyme localisation and complex formation in glycan assembly within the Golgi apparatus. Current Opinion in Cell Biology, 2004, 16, 356-363.	2.6	94
154	Metabolic Labeling of Fucosylated Glycans in Developing Zebrafish. ACS Chemical Biology, 2011, 6, 547-552.	1.6	94
155	Compositional profiling of heparin/heparan sulfate using mass spectrometry: assay for specificity of a novel extracellular human endosulfatase. Glycobiology, 2005, 15, 818-826.	1.3	93
156	Visualization of mycobacterial membrane dynamics in live cells. Journal of the American Chemical Society, 2017, 139, 3488-3495.	6.6	93
157	Deconvoluting the Functions of Polypeptide N-α-Acetylgalactosaminyltransferase Family Members by Glycopeptide Substrate Profiling. Chemistry and Biology, 2004, 11, 1009-1016.	6.2	92
158	Synthesis of a Fluorogenic Cyclooctyne Activated by Cu-Free Click Chemistry. Organic Letters, 2011, 13, 5937-5939.	2.4	92
159	PapA1 and PapA2 are acyltransferases essential for the biosynthesis of the Mycobacterium tuberculosis virulence factor Sulfolipid-1. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 11221-11226.	3.3	91
160	Constructing Azide-Labeled Cell Surfaces Using Polysaccharide Biosynthetic Pathways. Methods in Enzymology, 2003, 362, 249-272.	0.4	90
161	Imaging the Glycosylation State of Cell Surface Glycoproteins by Twoâ€Photon Fluorescence Lifetime Imaging Microscopy. Angewandte Chemie - International Edition, 2013, 52, 14045-14049.	7.2	89
162	Real-Time Bioluminescence Imaging of Glycans on Live Cells. Journal of the American Chemical Society, 2010, 132, 8563-8565.	6.6	88

#	Article	IF	CITATIONS
163	GlcNAc 2-Epimerase Can Serve a Catabolic Role in Sialic Acid Metabolism. Journal of Biological Chemistry, 2003, 278, 8035-8042.	1.6	86
164	A chemical approach to unraveling the biological function of the glycosylphosphatidylinositol anchor. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20332-20337.	3.3	86
165	New Aldehyde Tag Sequences Identified by Screening Formylglycine Generating Enzymes <i>in Vitro</i> and <i>in Vivo</i> . Journal of the American Chemical Society, 2008, 130, 12240-12241.	6.6	86
166	The Regulation of Sulfur Metabolism in Mycobacterium tuberculosis. PLoS Pathogens, 2011, 7, e1002036.	2.1	86
167	Chemically tunable mucin chimeras assembled on living cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12574-12579.	3.3	86
168	5′-Adenosinephosphosulfate Lies at a Metabolic Branch Point in Mycobacteria. Journal of Biological Chemistry, 2002, 277, 32606-32615.	1.6	83
169	A Strategy for the Selective Imaging of Glycans Using Caged Metabolic Precursors. Journal of the American Chemical Society, 2010, 132, 9516-9518.	6.6	83
170	Sulfate Metabolism in Mycobacteria. ChemBioChem, 2006, 7, 1516-1524.	1.3	82
171	Protein Glycoengineering Enabled by the Versatile Synthesis of Aminooxy Glycans and the Genetically Encoded Aldehyde Tag. Journal of the American Chemical Society, 2011, 133, 16127-16135.	6.6	82
172	Development of IsoTaC, a Chemical Glycoproteomics Technique for Profiling Intact N- and O-Glycopeptides from Whole Cell Proteomes. Journal of Proteome Research, 2017, 16, 1706-1718.	1.8	82
173	Synthesis of carbon-linked glycopeptides as stable glycopeptide models. Journal of Organic Chemistry, 1992, 57, 6092-6094.	1.7	81
174	Engineering Novel Cell Surface Receptors for Virus-mediated Gene Transfer. Journal of Biological Chemistry, 1999, 274, 21878-21884.	1.6	81
175	Polysialic Acid, a Glycan with Highly Restricted Expression, Is Found on Human and Murine Leukocytes and Modulates Immune Responses. Journal of Immunology, 2008, 181, 6850-6858.	0.4	81
176	Imaging the Sialome during Zebrafish Development with Copperâ€Free Click Chemistry. ChemBioChem, 2012, 13, 353-357.	1.3	81
177	Synthesis of β-C-Glycosides of N-Acetylglucosamine via Keck Allylation Directed by Neighboring Phthalimide Groups. Journal of Organic Chemistry, 1996, 61, 6442-6445.	1.7	79
178	Discovery of Estrogen Sulfotransferase Inhibitors from a Purine Library Screen. Journal of Medicinal Chemistry, 2001, 44, 2683-2686.	2.9	79
179	Metabolic selection of glycosylation defects in human cells. Nature Biotechnology, 2001, 19, 553-558.	9.4	79
180	Synthetic Analogues of Glycosylphosphatidylinositol-Anchored Proteins and Their Behavior in Supported Lipid Bilayers. Journal of the American Chemical Society, 2007, 129, 11543-11550.	6.6	79

#	Article	IF	CITATIONS
181	Click-EM for imaging metabolically tagged nonprotein biomolecules. Nature Chemical Biology, 2016, 12, 459-465.	3.9	79
182	An RNA-centric dissection of host complexes controlling flavivirus infection. Nature Microbiology, 2019, 4, 2369-2382.	5.9	79
183	Drug Targeting Mycobacterium tuberculosis Cell Wall Synthesis: Development of a Microtiter Plate-Based Screen for UDP-Galactopyranose Mutase and Identification of an Inhibitor from a Uridine-Based Library. Antimicrobial Agents and Chemotherapy, 2003, 47, 378-382.	1.4	78
184	Targeted metabolic labeling of yeast N-glycans with unnatural sugars. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3988-3993.	3.3	78
185	The Ecstasy and Agony of Assay Interference Compounds. ACS Central Science, 2017, 3, 143-147.	5.3	78
186	Direct observation of kinetic traps associated with structural transformations leading to multiple pathways of S-layer assembly. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12968-12973.	3.3	77
187	Glycocalyx Engineering with a Recycling Glycopolymer that Increases Cell Survival In Vivo. Angewandte Chemie - International Edition, 2015, 54, 15782-15788.	7.2	77
188	A Conserved Mechanism for Sulfonucleotide Reduction. PLoS Biology, 2005, 3, e250.	2.6	76
189	Using Phage Display to Select Antibodies Recognizing Post-translational Modifications Independently of Sequence Context. Molecular and Cellular Proteomics, 2006, 5, 2350-2363.	2.5	75
190	Elucidation and Chemical Modulation of Sulfolipid-1 Biosynthesis in Mycobacterium tuberculosis. Journal of Biological Chemistry, 2012, 287, 7990-8000.	1.6	75
191	Quantitative Super-Resolution Microscopy of the Mammalian Glycocalyx. Developmental Cell, 2019, 50, 57-72.e6.	3.1	74
192	Cracking the carbohydrate code for selectin recognition. Chemistry and Biology, 1995, 2, 703-708.	6.2	73
193	Synthesis of Oxime-Linked Mucin Mimics Containing the Tumor-Related TN and Sialyl TN Antigens. Organic Letters, 2001, 3, 3691-3694.	2.4	73
194	Genome-wide CRISPR screens reveal a specific ligand for the glycan-binding immune checkpoint receptor Siglec-7. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	73
195	An efficient method for the synthesis of α- and β-c-glycosyl aldehydes. Tetrahedron Letters, 1992, 33, 737-740.	0.7	72
196	A Chemically Synthesized Version of the Insect Antibacterial Glycopeptide, Diptericin, Disrupts Bacterial Membrane Integrity. Biochemistry, 1999, 38, 11700-11710.	1.2	72
197	Live-Cell Labeling of Specific Protein Glycoforms by Proximity-Enhanced Bioorthogonal Ligation. Journal of the American Chemical Society, 2015, 137, 10452-10455.	6.6	72
198	Cell type-selective secretome profiling in vivo. Nature Chemical Biology, 2021, 17, 326-334.	3.9	72

#	Article	IF	CITATIONS
199	A bulky glycocalyx fosters metastasis formation by promoting G1 cell cycle progression. ELife, 2017, 6, .	2.8	71
200	Investigating Cell Surface Galectin-Mediated Cross-Linking on Glycoengineered Cells. Journal of the American Chemical Society, 2012, 134, 9549-9552.	6.6	70
201	An enzymatic toolkit for selective proteolysis, detection, and visualization of mucin-domain glycoproteins. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21299-21307.	3.3	70
202	The synthesis of heterobifunctional linkers for the conjugation of ligands to molecular probes. Journal of Organic Chemistry, 1991, 56, 4326-4329.	1.7	67
203	A Chemical Method for Labeling Lysine Methyltransferase Substrates. ChemBioChem, 2011, 12, 330-334.	1.3	67
204	An Inhibitor of the Human UDP-GlcNAc 4-Epimerase Identified from a Uridine-Based Library. Chemistry and Biology, 2002, 9, 113-129.	6.2	66
205	A Bioorthogonal Quadricyclane Ligation. Journal of the American Chemical Society, 2011, 133, 17570-17573.	6.6	66
206	Mucus sialylation determines intestinal host-commensal homeostasis. Cell, 2022, 185, 1172-1188.e28.	13.5	66
207	C-Glycosyl Aldehydes:Â Synthons forC-Linked Disaccharides. Journal of Organic Chemistry, 1996, 61, 1894-1897.	1.7	65
208	Synthesis of Lipidated Green Fluorescent Protein and Its Incorporation in Supported Lipid Bilayers. Journal of the American Chemical Society, 2005, 127, 14383-14387.	6.6	65
209	C-glycosyl compounds bind to receptors on the surface of Escherichia coli and can target proteins to the organism. Carbohydrate Research, 1992, 223, 243-253.	1.1	64
210	New Directions in Glycoprotein Engineering. Tetrahedron, 2000, 56, 9515-9525.	1.0	64
211	Chemoenzymatic Fc Glycosylation via Engineered Aldehyde Tags. Bioconjugate Chemistry, 2014, 25, 788-795.	1.8	64
212	PapA3 Is an Acyltransferase Required for Polyacyltrehalose Biosynthesis in Mycobacterium tuberculosis. Journal of Biological Chemistry, 2009, 284, 12745-12751.	1.6	63
213	Nuclear repartitioning of galectin-1 by an extracellular glycan switch regulates mammary morphogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4820-7.	3.3	63
214	Chemoselective Elaboration ofO-Linked Glycopeptide Mimetics by Alkylation of 3-ThioGalNAc. Journal of the American Chemical Society, 2001, 123, 1587-1595.	6.6	62
215	Organelle Membrane Proteomics Reveals Differential Influence of Mycobacterial Lipoglycans on Macrophage Phagosome Maturation and Autophagosome Accumulation. Journal of Proteome Research, 2011, 10, 339-348.	1.8	62
216	Bioorthogonal Labeling of Human Prostate Cancer Tissue Slice Cultures for Glycoproteomics. Angewandte Chemie - International Edition, 2017, 56, 8992-8997.	7.2	62

#	Article	IF	CITATIONS
217	Discovery of sulfated metabolites in mycobacteria with a genetic and mass spectrometric approach. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 17037-17042.	3.3	61
218	Structural Characterization of a Novel Sulfated Menaquinone produced by <i>stf3</i> from <i>Mycobacterium tuberculosis</i> . ACS Chemical Biology, 2008, 3, 619-624.	1.6	61
219	Glycoproteomics. Nature Reviews Methods Primers, 2022, 2, .	11.8	61
220	Sulfolipid-1 Biosynthesis Restricts <i>Mycobacterium tuberculosis</i> Growth in Human Macrophages. ACS Chemical Biology, 2012, 7, 863-870.	1.6	60
221	Membrane-tethered mucin-like polypeptides sterically inhibit binding and slow fusion kinetics of influenza A virus. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12643-12650.	3.3	60
222	Small Molecule Inhibitors of Mucin-Type O-Linked Glycosylation from a Uridine-Based Library. Chemistry and Biology, 2004, 11, 337-345.	6.2	59
223	Self-assembled cellular microarrays patterned using DNA barcodes. Lab on A Chip, 2007, 7, 1442.	3.1	59
224	Real-Time Noninvasive Imaging of Fatty Acid Uptake <i>in Vivo</i> . ACS Chemical Biology, 2012, 7, 1884-1891.	1.6	59
225	Metabolic labeling of glycoproteins with chemical tags through unnatural sialic acid biosynthesis. Methods in Enzymology, 2000, 327, 260-275.	0.4	58
226	Substrate Recognition, Protein Dynamics, and Iron-Sulfur Cluster in Pseudomonas aeruginosa Adenosine 5′-Phosphosulfate Reductase. Journal of Molecular Biology, 2006, 364, 152-169.	2.0	58
227	Osmosensory signaling in <i>Mycobacterium tuberculosis</i> mediated by a eukaryotic-like Ser/Thr protein kinase. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E5069-77.	3.3	58
228	A Bioorthogonal Reaction of <i>N</i> â€Oxide and Boron Reagents. Angewandte Chemie - International Edition, 2015, 54, 15777-15781.	7.2	58
229	Sialic Acid Glycobiology Unveils Trypanosoma cruzi Trypomastigote Membrane Physiology. PLoS Pathogens, 2016, 12, e1005559.	2.1	57
230	Engineering Orthogonal Polypeptide GalNAc-Transferase and UDP-Sugar Pairs. Journal of the American Chemical Society, 2019, 141, 13442-13453.	6.6	57
231	DNA-PKcs has KU-dependent function in rRNA processing and haematopoiesis. Nature, 2020, 579, 291-296.	13.7	57
232	Synthetic Studies toward <i>Mycobacterium tuberculosis</i> Sulfolipid-I. Journal of Organic Chemistry, 2008, 73, 1008-1017.	1.7	56
233	CRISPR-Cas9 screens identify regulators of antibody–drug conjugate toxicity. Nature Chemical Biology, 2019, 15, 949-958.	3.9	56
234	Conditional Glycosylation in Eukaryotic Cells Using a Biocompatible Chemical Inducer of Dimerization. Journal of the American Chemical Society, 2008, 130, 13186-13187.	6.6	55

#	Article	IF	CITATIONS
235	Metabolic precision labeling enables selective probing of O-linked <i>N</i> -acetylgalactosamine glycosylation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25293-25301.	3.3	55
236	Engineered cell surfaces: fertile ground for molecular landscaping. Chemistry and Biology, 1997, 4, 415-422.	6.2	54
237	Chemoselective Ligation Applied to the Synthesis of a Biantennary N-Linked Glycoform of CD52. Journal of the American Chemical Society, 2003, 125, 6149-6159.	6.6	54
238	Quantitative Proteomic Profiling of Hostâ^'Pathogen Interactions: The Macrophage Response to <i>Mycobacterium tuberculosis</i> Lipids. Journal of Proteome Research, 2009, 8, 282-289.	1.8	54
239	Isotopic Signature Transfer and Mass Pattern Prediction (IsoStamp): An Enabling Technique for Chemically-Directed Proteomics. ACS Chemical Biology, 2011, 6, 829-836.	1.6	54
240	Glyco-seek: Ultrasensitive Detection of Protein-Specific Glycosylation by Proximity Ligation Polymerase Chain Reaction. Journal of the American Chemical Society, 2016, 138, 10722-10725.	6.6	54
241	A Riboswitch-Based Inducible Gene Expression System for Mycobacteria. PLoS ONE, 2012, 7, e29266.	1.1	54
242	The synthesis of 2-azido C-glycosyl sugars. Tetrahedron Letters, 1992, 33, 3109-3112.	0.7	53
243	Metabolic incorporation of unnatural sialic acids into Haemophilus ducreyi lipooligosaccharides. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 3089-3094.	3.3	53
244	Global gene expression of cells attached to a tissue engineering scaffold. Biomaterials, 2004, 25, 5631-5641.	5.7	53
245	Ultrasensitive Antibody Detection by Agglutination-PCR (ADAP). ACS Central Science, 2016, 2, 139-147.	5.3	53
246	Chemical Modulation of Protein O-GlcNAcylation <i>via</i> OGT Inhibition Promotes Human Neural Cell Differentiation. ACS Chemical Biology, 2017, 12, 2030-2039.	1.6	53
247	Synthesis of an oxime-linked neoglycopeptide with glycosylation-dependent activity similar to its native counterpart. Tetrahedron Letters, 1998, 39, 8417-8420.	0.7	52
248	A sulfated metabolite produced by stf3 negatively regulates the virulence of Mycobacterium tuberculosis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4258-4263.	3.3	52
249	Modulating cell surface immunoreactivity by metabolic induction of unnatural carbohydrate antigens. Chemistry and Biology, 2001, 8, 265-275.	6.2	51
250	Formation of 1,1-α,α-Glycosidic Bonds By Intramolecular Aglycone Delivery. A Convergent Synthesis of Trehalose. Organic Letters, 2003, 5, 3185-3188.	2.4	51
251	Glycopeptide-preferring Polypeptide GalNAc Transferase 10 (ppGalNAc T10), Involved in Mucin-type O-Glycosylation, Has a Unique GalNAc-O-Ser/Thr-binding Site in Its Catalytic Domain Not Found in ppGalNAc T1 or T2. Journal of Biological Chemistry, 2009, 284, 20387-20397.	1.6	51
252	<i>N</i> â€Carboxyanhydride Polymerization of Glycopolypeptides That Activate Antigenâ€Presenting Cells through Dectinâ€1 and Dectinâ€2. Angewandte Chemie - International Edition, 2018, 57, 3137-3142.	7.2	51

#	Article	IF	CITATIONS
253	Hierarchical Assembly of Model Cell Surfaces:Â Synthesis of Mucin Mimetic Polymers and Their Display on Supported Bilayers. Journal of the American Chemical Society, 2007, 129, 5462-5471.	6.6	50
254	Regulating Cell Surface Glycosylation by Small Molecule Control of Enzyme Localization. Chemistry and Biology, 2003, 10, 1303-1311.	6.2	49
255	A Visualizable Chainâ€Terminating Inhibitor of Glycosaminoglycan Biosynthesis in Developing Zebrafish. Angewandte Chemie - International Edition, 2014, 53, 3347-3352.	7.2	49
256	A receptor-mediated immune response using synthetic glycoconjugates. Journal of the American Chemical Society, 1992, 114, 5543-5546.	6.6	48
257	Molecular Basis for G Protein Control of the Prokaryotic ATP Sulfurylase. Molecular Cell, 2006, 21, 109-122.	4.5	48
258	Control of the Molecular Orientation of Membrane-Anchored Biomimetic Glycopolymers. Journal of the American Chemical Society, 2009, 131, 10263-10268.	6.6	47
259	Stereoselective Synthesis ofmyo-Inositol via Ring-Closing Metathesis:  A Building Block for Glycosylphosphatidylinositol (GPI) Anchor Synthesis. Organic Letters, 2002, 4, 1359-1361.	2.4	46
260	Tyrosylprotein sulfotransferase inhibitors generated by combinatorial target-Guided ligand assembly. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 329-332.	1.0	46
261	Antibody targeting to bacterial cells using receptor-specific ligands. Journal of the American Chemical Society, 1992, 114, 2242-2245.	6.6	45
262	Sulfatase-activated fluorophores for rapid discrimination of mycobacterial species and strains. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12911-12916.	3.3	45
263	Selectin-Saccharide Interactions: Revealing Structure-Function Relationships with Chemical Synthesis. Journal of Organic Chemistry, 1995, 60, 6254-6255.	1.7	44
264	DNA-barcode directed capture and electrochemical metabolic analysis of single mammalian cells on a microelectrode array. Lab on A Chip, 2009, 9, 2010.	3.1	44
265	Sequential assembly of the septal cell envelope prior to V snapping in Corynebacterium glutamicum. Nature Chemical Biology, 2019, 15, 221-231.	3.9	44
266	Ferroptosis regulation by the NGLY1/NFE2L1 pathway. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2118646119.	3.3	44
267	Identification of an N-acetylglucosamine-6-O-sulfotransferase activity specific to lymphoid tissue: an enzyme with a possible role in lymphocyte homing. Chemistry and Biology, 1998, 5, 447-460.	6.2	43
268	Minimal Sulfated Carbohydrates for Recognition by L-selectin and the MECA-79 Antibody. Journal of Biological Chemistry, 2000, 275, 32642-32648.	1.6	43
269	Synthetic glycobiology: exploits in the Golgi compartment. Current Opinion in Chemical Biology, 2006, 10, 645-651.	2.8	43
270	Differential Effects of Unnatural Sialic Acids on the Polysialylation of the Neural Cell Adhesion Molecule and Neuronal Behavior. Journal of Biological Chemistry, 2002, 277, 9255-9261.	1.6	42

#	Article	IF	CITATIONS
271	Crosslinking Studies of Protein-Protein Interactions in Nonribosomal Peptide Biosynthesis. Chemistry and Biology, 2009, 16, 372-381.	6.2	42
272	Modulation of immune cell reactivity with <i>cis</i> -binding Siglec agonists. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	42
273	The Mycobacterium tuberculosis Virulence Factor Trehalose Dimycolate Imparts Desiccation Resistance to Model Mycobacterial Membranes. Biophysical Journal, 2008, 94, 4718-4724.	0.2	41
274	The Phosphoinositide Kinase PIKfyve Promotes Cathepsin-S-Mediated Major Histocompatibility Complex Class II Antigen Presentation. IScience, 2019, 11, 160-177.	1.9	41
275	A Fluorogenic Trehalose Probe for Tracking Phagocytosed <i>Mycobacterium tuberculosis</i> . Journal of the American Chemical Society, 2020, 142, 15259-15264.	6.6	41
276	Modulation of Ocular Surface Glycocalyx Barrier Function by a Galectin-3 N-terminal Deletion Mutant and Membrane-Anchored Synthetic Glycopolymers. PLoS ONE, 2013, 8, e72304.	1.1	41
277	cDNA cloning and expression of UDP-N-acetyl-d-galactosamine:polypeptide N-acetylgalactosaminyltransferase T1 from Toxoplasma gondii. Molecular and Biochemical Parasitology, 2003, 131, 93-107.	0.5	40
278	A high-throughput assay for O-GlcNAc transferase detects primary sequence preferences in peptide substrates. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 3851-3854.	1.0	40
279	Identification of glycoproteins targeted by Trypanosoma cruzi trans-sialidase, a virulence factor that disturbs lymphocyte glycosylation. Glycobiology, 2010, 20, 833-842.	1.3	40
280	Cell surface glycoproteomic analysis of prostate cancer-derived PC-3 cells. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 4945-4950.	1.0	40
281	Revealing the human mucinome. Nature Communications, 2022, 13, .	5.8	40
282	Polysialic acid governs T-cell development by regulating progenitor access to the thymus. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11995-12000.	3.3	39
283	Identification of new components of the RipC-FtsEX cell separation pathway of Corynebacterineae. PLoS Genetics, 2019, 15, e1008284.	1.5	39
284	Synthetic Siglec-9 Agonists Inhibit Neutrophil Activation Associated with COVID-19. ACS Central Science, 2021, 7, 650-657.	5.3	39
285	A Library Approach to the Generation of Bisubstrate Analogue Sulfotransferase Inhibitors. Organic Letters, 2001, 3, 2657-2660.	2.4	38
286	Preparation of pHEMA–CP composites with high interfacial adhesion via template-driven mineralization. Journal of the European Ceramic Society, 2003, 23, 2905-2919.	2.8	38
287	Formylglycine-generating enzyme binds substrate directly at a mononuclear Cu(I) center to initiate O ₂ activation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5370-5375.	3.3	38
288	Biosynthesis of Sialylated Lipooligosaccharides inHaemophilus ducreyils Dependent on Exogenous Sialic Acid and Not Mannosamine. Incorporation Studies UsingN-Acylmannosamine Analogues,N-Glycolylneuraminic Acid, and13C-LabeledN-Acetylneuraminic Acidâ€. Biochemistry, 2001, 40, 12666-12677.	1.2	37

#	Article	IF	CITATIONS
289	Chemical approaches to the investigation of cellular systems. Bioorganic and Medicinal Chemistry, 2002, 10, 829-840.	1.4	37
290	Acute Modulation of Mycobacterial Cell Envelope Biogenesis by Front‣ine Tuberculosis Drugs. Angewandte Chemie - International Edition, 2018, 57, 5267-5272.	7.2	37
291	Degradation from the outside in: Targeting extracellular and membrane proteins for degradation through the endolysosomal pathway. Cell Chemical Biology, 2021, 28, 1072-1080.	2.5	37
292	Azido Sialic Acids Can Modulate Cell-Surface Interactions. ChemBioChem, 2004, 5, 1706-1709.	1.3	36
293	Syntheses of 6-Sulfo Sialyl Lewis X Glycans Corresponding to thel-Selectin Ligand "Sulfoadhesinâ€. Organic Letters, 2004, 6, 2345-2348.	2.4	36
294	A Role for Sulfation-Desulfation in the Uptake of Bisphenol A into Breast Tumor Cells. Chemistry and Biology, 2006, 13, 891-897.	6.2	36
295	The Ecstasy and Agony of Assay Interference Compounds. ACS Medicinal Chemistry Letters, 2017, 8, 379-382.	1.3	35
296	Sulfation of N-Acetylglucosamine by Chondroitin 6-Sulfotransferase 2 (GST-5). Journal of Biological Chemistry, 2000, 275, 40226-40234.	1.6	34
297	Kinetic measurements and mechanism determination of Stf0 sulfotransferase using mass spectrometry. Analytical Biochemistry, 2005, 341, 94-104.	1.1	34
298	Cyclopropane Modification of Trehalose Dimycolate Drives Granuloma Angiogenesis and Mycobacterial Growth through Vegf Signaling. Cell Host and Microbe, 2018, 24, 514-525.e6.	5.1	34
299	Electron-Based Dissociation Is Needed for O-Glycopeptides Derived from OpeRATOR Proteolysis. Analytical Chemistry, 2020, 92, 14878-14884.	3.2	34
300	An Acquired and Endogenous Glycocalyx Forms a Bidirectional "Don't Eat―and "Don't Eat Me― to Phagocytosis. Current Biology, 2021, 31, 77-89.e5.	Barrier	34
301	Differential Carbohydrate Recognition of Two GlcNAc-6-sulfotransferases with Possible Roles in L-Selectin Ligand Biosynthesis. Journal of the American Chemical Society, 2000, 122, 8612-8622.	6.6	33
302	Synthetic Trehalose Glycolipids Confer Desiccation Resistance to Supported Lipid Monolayers. Langmuir, 2009, 25, 5193-5198.	1.6	33
303	Antibody detection by agglutination–PCR (ADAP) enables early diagnosis of HIV infection by oral fluid analysis. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1250-1255.	3.3	32
304	Training the next generation of biomedical investigators in glycosciences. Journal of Clinical Investigation, 2016, 126, 405-408.	3.9	32
305	Bioluminescent Probes of Sulfatase Activity. ChemBioChem, 2010, 11, 2096-2099.	1.3	30
306	Mycobacterial Lipid Logic. Cell Host and Microbe, 2014, 15, 1-2.	5.1	30

#	Article	IF	CITATIONS
307	Capture and visualization of live Mycobacterium tuberculosis bacilli from tuberculosis patient bioaerosols. PLoS Pathogens, 2021, 17, e1009262.	2.1	30
308	Targeting hypersialylation in multiple myeloma represents a novel approach to enhance NK cell–mediated tumor responses. Blood Advances, 2022, 6, 3352-3366.	2.5	30
309	Colgi Localization of Carbohydrate Sulfotransferases Is a Determinant of L-selectin Ligand Biosynthesis. Journal of Biological Chemistry, 2003, 278, 40282-40295.	1.6	29
310	Tin-mediated phosphorylation: Synthesis and selectin binding of a phospho Lewis a analog. Tetrahedron Letters, 1996, 37, 1953-1956.	0.7	28
311	A Homologation Approach to the Synthesis of Difluorinated Cycloalkynes. Organic Letters, 2014, 16, 1634-1637.	2.4	28
312	Spreading of a mycobacterial cell-surface lipid into host epithelial membranes promotes infectivity. ELife, 2020, 9, .	2.8	28
313	METABOLIC SUBSTRATE ENGINEERING AS A TOOL FOR GLYCOBIOLOGY. Journal of Carbohydrate Chemistry, 2002, 21, 943-977.	0.4	27
314	A small-molecule switch for Golgi sulfotransferases. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 16715-16720.	3.3	27
315	An Expanded Set of Fluorogenic Sulfatase Activity Probes. ChemBioChem, 2014, 15, 1101-1105.	1.3	26
316	Isotope-targeted glycoproteomics (IsoTaG) analysis of sialylated N- and O-glycopeptides on an Orbitrap Fusion Tribrid using azido and alkynyl sugars. Analytical and Bioanalytical Chemistry, 2017, 409, 579-588.	1.9	26
317	Multiple Click-Selective tRNA Synthetases Expand Mammalian Cell-Specific Proteomics. Journal of the American Chemical Society, 2018, 140, 7046-7051.	6.6	26
318	Optimization of Metabolic Oligosaccharide Engineering with Ac ₄ GalNAlk and Ac ₄ GlcNAlk by an Engineered Pyrophosphorylase. ACS Chemical Biology, 2021, 16, 1961-1967.	1.6	26
319	Mucin Granule Intraluminal Organization in Living Mucous/Goblet Cells. Journal of Biological Chemistry, 2006, 281, 4844-4855.	1.6	25
320	Recent advances in the chemical synthesis of mucin-like glycoproteins. Glycobiology, 2002, 12, 69R-77R.	1.3	25
321	Synthesis of a Bisubstrate Analogue Targeting Estrogen Sulfotransferase. Journal of Organic Chemistry, 2003, 68, 170-173.	1.7	24
322	Synthesis of mono- and dideoxygenated α,α-trehalose analogs. Carbohydrate Research, 2007, 342, 2014-2030.	1.1	24
323	Toward Point-of-Care Detection of <i>Mycobacterium tuberculosis</i> : A Brighter Solvatochromic Probe Detects Mycobacteria within Minutes. Jacs Au, 2021, 1, 1368-1379.	3.6	24
324	Synthesis and Reactivity of Dibenzoselenacycloheptynes. Organic Letters, 2013, 15, 3038-3041.	2.4	23

#	Article	IF	CITATIONS
325	Chemical Lectinology: Tools for Probing the Ligands and Dynamics of Mammalian Lectins InÂVivo. Chemistry and Biology, 2015, 22, 983-993.	6.2	23
326	The <i>rv1184c</i> Locus Encodes Chp2, an Acyltransferase in Mycobacterium tuberculosis Polyacyltrehalose Lipid Biosynthesis. Journal of Bacteriology, 2015, 197, 201-210.	1.0	23
327	Biosynthesis and Regulation of Sulfomenaquinone, a Metabolite Associated with Virulence in <i>Mycobacterium tuberculosis</i> . ACS Infectious Diseases, 2016, 2, 800-806.	1.8	23
328	Transition to a mesenchymal state in neuroblastoma confers resistance to anti-GD2 antibody via reduced expression of ST8SIA1. Nature Cancer, 2022, 3, 976-993.	5.7	23
329	Direct incorporation of unprotected ketone groups into peptides during solid-phase synthesis: Application to the one-step modification of peptides with two different biophysical probes for FRET. Tetrahedron Letters, 1998, 39, 7279-7282.	0.7	22
330	An α-Formylglycine Building Block for Fmoc-Based Solid-Phase Peptide Synthesis. Organic Letters, 2006, 8, 131-134.	2.4	22
331	Ingredients for a Positive Safety Culture. ACS Central Science, 2016, 2, 764-766.	5.3	22
332	IL-1R and MyD88 Contribute to the Absence of a Bacterial Microbiome on the Healthy Murine Cornea. Frontiers in Microbiology, 2018, 9, 1117.	1.5	22
333	Sensitive detection of multiple islet autoantibodies in type 1 diabetes using small sample volumes by agglutination-PCR. PLoS ONE, 2020, 15, e0242049.	1.1	22
334	Mycobacterium tuberculosis Rv3406 Is a Type II Alkyl Sulfatase Capable of Sulfate Scavenging. PLoS ONE, 2013, 8, e65080.	1.1	21
335	A metabolic labeling approach for glycoproteomic analysis reveals altered glycoprotein expression upon GALNT3 knockdown in ovarian cancer cells. Journal of Proteomics, 2016, 145, 91-102.	1.2	21
336	Cellular Microfabrication: Observing Intercellular Interactions Using Lithographically-Defined DNA Capture Sequences. Langmuir, 2012, 28, 8120-8126.	1.6	20
337	Conformational Transitions at an Sâ€Layer Growing Boundary Resolved by Cryoâ€TEM. Angewandte Chemie - International Edition, 2013, 52, 4829-4832.	7.2	20
338	The Ecstasy and Agony of Assay Interference Compounds. Journal of Chemical Information and Modeling, 2017, 57, 387-390.	2.5	20
339	Noncovalent complexes of APS reductase from M. tuberculosis: Delineating a mechanistic model using ESI-FTICR MS. Journal of the American Society for Mass Spectrometry, 2007, 18, 167-178.	1.2	19
340	Click-Chemistry Based High Throughput Screening Platform for Modulators of Ras Palmitoylation. Scientific Reports, 2017, 7, 41147.	1.6	19
341	Membrane curvature regulates the spatial distribution of bulky glycoproteins. Nature Communications, 2022, 13, .	5.8	19
342	An Inhibitor of O-Glycosylation Induces Apoptosis in NIH3T3 Cells and Developing Mouse Embryonic Mandibular Tissues. Journal of Biological Chemistry, 2004, 279, 50382-50390.	1.6	18

#	Article	IF	CITATIONS
343	Single-cell-based sensors and synchrotron FTIR spectroscopy: A hybrid system towards bacterial detection. Biosensors and Bioelectronics, 2007, 23, 253-260.	5.3	18
344	The CD22-IGF2R interaction is a therapeutic target for microglial lysosome dysfunction in Niemann-Pick type C. Science Translational Medicine, 2021, 13, eabg2919.	5.8	18
345	Vaccine efficacy of an attenuated but persistent Mycobacterium tuberculosis cysH mutant. Journal of Medical Microbiology, 2007, 56, 454-458.	0.7	17
346	Molecular Orientation of Membrane-Anchored Mucin Glycoprotein Mimics. Journal of Physical Chemistry B, 2007, 111, 12133-12135.	1.2	17
347	Glycocalyx Engineering with a Recycling Glycopolymer that Increases Cell Survival In Vivo. Angewandte Chemie, 2015, 127, 16008-16014.	1.6	17
348	A Novel Germline Variant in CSF3R Reduces N-Glycosylation and Exerts Potent Oncogenic Effects in Leukemia. Cancer Research, 2018, 78, 6762-6770.	0.4	17
349	Deacetylated sialic acids modulates immune mediated cytotoxicity via the sialic acid-Siglec pathway. Glycobiology, 2021, 31, 1279-1294.	1.3	17
350	Self-Assembly of "S-Bilayersâ€; a Step Toward Expanding the Dimensionality of S-Layer Assemblies. ACS Nano, 2013, 7, 4946-4953.	7.3	16
351	Host Actin Polymerization Tunes the Cell Division Cycle of an Intracellular Pathogen. Cell Reports, 2015, 11, 499-507.	2.9	15
352	Isotope Targeted Glycoproteomics (IsoTaG) to Characterize Intact, Metabolically Labeled Glycopeptides from Complex Proteomes. Current Protocols in Chemical Biology, 2016, 8, 59-82.	1.7	15
353	Xylosyltransferase II is the predominant isoenzyme which is responsible for the steady-state level of xylosyltransferase activity in human serum. Biochemical and Biophysical Research Communications, 2015, 459, 469-474.	1.0	14
354	Systemic delivery of a targeted synthetic immunostimulant transforms the immune landscape for effective tumor regression. Cell Chemical Biology, 2022, 29, 451-462.e8.	2.5	14
355	A 96-well dot-blot assay for carbohydrate sulfotransferases. Analytical Biochemistry, 2002, 307, 330-336.	1.1	13
356	Directing Flux in Glycan Biosynthetic Pathways with a Small Molecule Switch. ChemBioChem, 2004, 5, 1455-1458.	1.3	13
357	Grand Challenges in Chemistry for 2016 and Beyond. ACS Central Science, 2016, 2, 1-3.	5.3	13
358	Isotype-specific agglutination-PCR (ISAP): AÂsensitive and multiplex method for measuring allergen-specific IgE. Journal of Allergy and Clinical Immunology, 2018, 141, 1901-1904.e15.	1.5	13
359	Computation-Guided Rational Design of a Peptide Motif That Reacts with Cyanobenzothiazoles via Internal Cysteine–Lysine Relay. Journal of Organic Chemistry, 2018, 83, 7467-7479.	1.7	13
360	Inverting family GH156 sialidases define an unusual catalytic motif for glycosidase action. Nature Communications, 2019, 10, 4816.	5.8	13

#	Article	IF	CITATIONS
361	Confronting Racism in Chemistry Journals. ACS Applied Materials & Interfaces, 2020, 12, 28925-28927.	4.0	13
362	Reading the glyco-code: New approaches to studying protein–carbohydrate interactions. Current Opinion in Structural Biology, 2022, 75, 102395.	2.6	13
363	The Stem Region of the Sulfotransferase ClcNAc6ST-1 Is a Determinant of Substrate Specificity. Journal of Biological Chemistry, 2004, 279, 40035-40043.	1.6	12
364	In vivo chemistry. Current Opinion in Chemical Biology, 2013, 17, 717-718.	2.8	11
365	Corneal surface glycosylation is modulated by ILâ€∃R and <i>Pseudomonas aeruginosa</i> challenge but is insufficient for inhibiting bacterial binding. FASEB Journal, 2017, 31, 2393-2404.	0.2	11
366	Imaging Mycobacterial Trehalose Glycolipids. Methods in Enzymology, 2018, 598, 355-369.	0.4	11
367	Structure-guided mutagenesis of a mucin-selective metalloprotease from Akkermansia muciniphila alters substrate preferences. Journal of Biological Chemistry, 2022, 298, 101917.	1.6	11
368	Fluorescence probes in biochemistry: An examination of the non-fluorescent behavior of dansylamide by photoacoustic calorimetry. Analytical Biochemistry, 1992, 207, 214-226.	1.1	10
369	Sensitivity optimisation of tuberculosis bioaerosol sampling. PLoS ONE, 2020, 15, e0238193.	1.1	10
370	The Mycobacterium tuberculosis CysQ phosphatase modulates the biosynthesis of sulfated glycolipids and bacterial growth. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 4956-4959.	1.0	9
371	Multiomics Analysis of Spatially Distinct Stromal Cells Reveals Tumor-Induced O-Glycosylation of the CDK4–pRB Axis in Fibroblasts at the Invasive Tumor Edge. Cancer Research, 2022, 82, 648-664.	0.4	9
372	An ELISA for selectins based on binding to a physiological ligand. Journal of Immunological Methods, 1997, 203, 157-165.	0.6	8
373	The Centrality of Chemistry. ACS Central Science, 2015, 1, 1-2.	5.3	8
374	The Ecstasy and Agony of Assay Interference Compounds. ACS Chemical Neuroscience, 2017, 8, 420-423.	1.7	8
375	The Ecstasy and Agony of Assay Interference Compounds. Biochemistry, 2017, 56, 1363-1366.	1.2	8
376	Functional glass slides for in vitro evaluation of interactions between osteosarcoma TE85 cells and mineral-binding ligands. Journal of Materials Chemistry, 2004, 14, 2643.	6.7	7
377	Proteomic dataset for altered glycoprotein expression upon GALNT3 knockdown in ovarian cancer cells. Data in Brief, 2016, 8, 342-349.	0.5	7
378	Sulfated Metabolites from Mycobacterium tuberculosis: Sulfolipid-1 and Beyond. , 0, , 291-304.		7

378 Sulfated Metabolites from Mycobacterium tuberculosis: Sulfolipid-1 and Beyond. , 0, , 291-304.

#	Article	IF	CITATIONS
379	Protocol for cell type-specific labeling, enrichment, and proteomic profiling of plasma proteins in mice. STAR Protocols, 2021, 2, 101014.	0.5	7
380	Analyzing nested experimental designs—A user-friendly resampling method to determine experimental significance. PLoS Computational Biology, 2022, 18, e1010061.	1.5	7
381	Inner space exploration: the chemical biologist's guide to the cell. Chemistry and Biology, 1998, 5, R313-R315.	6.2	6
382	Achieving Gender Balance in the Chemistry Professoriate Is Not Rocket Science. ACS Central Science, 2016, 2, 181-182.	5.3	6
383	Chemical Tools for the Study of Polysialic Acid. Trends in Glycoscience and Glycotechnology, 2004, 16, 305-318.	0.0	6
384	Werner Reutter: A Visionary Pioneer in Molecular Glycobiology. ChemBioChem, 2017, 18, 1141-1145.	1.3	5
385	Site-specific incorporation of quadricyclane into a protein and photocleavage of the quadricyclane ligation adduct. Bioorganic and Medicinal Chemistry, 2018, 26, 5280-5290.	1.4	5
386	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Materials & Interfaces, 2020, 12, 20147-20148.	4.0	5
387	Confronting Racism in Chemistry Journals. Nano Letters, 2020, 20, 4715-4717.	4.5	5
388	Targeted protein degradation: from small molecules to complex organelles—a Keystone Symposia report. Annals of the New York Academy of Sciences, 2022, 1510, 79-99.	1.8	5
389	Serial measurement of M. tuberculosis in blood from critically-ill patients with HIV-associated tuberculosis. EBioMedicine, 2022, 78, 103949.	2.7	5
390	Chemically Modified Bacterial Sacculi as a Vaccine Microparticle Scaffold. ACS Chemical Biology, 2022, 17, 1184-1196.	1.6	5
391	Piperidine-based glycodendrons as protein N-glycan prosthetics. Bioorganic and Medicinal Chemistry, 2016, 24, 4791-4800.	1.4	4
392	Voices of biotech. Nature Biotechnology, 2016, 34, 270-275.	9.4	4
393	The Ecstasy and Agony of Assay Interference Compounds. ACS Infectious Diseases, 2017, 3, 259-262.	1.8	4
394	Atoms out of Blobs: CryoEM Takes the Nobel Prize in Chemistry. ACS Central Science, 2017, 3, 1056-1056.	5.3	4
395	Bioorthogonal Labeling of Human Prostate Cancer Tissue Slice Cultures for Glycoproteomics. Angewandte Chemie, 2017, 129, 9120-9125.	1.6	4
396	Acute Modulation of Mycobacterial Cell Envelope Biogenesis by Front‣ine Tuberculosis Drugs. Angewandte Chemie, 2018, 130, 5365-5370.	1.6	4

#	Article	IF	CITATIONS
397	Confronting Racism in Chemistry Journals. Organic Letters, 2020, 22, 4919-4921.	2.4	4
398	Hydrogel Polymers from Alkylthio Acrylates for Biomedical Applications. ACS Symposium Series, 2002, , 163-174.	0.5	3
399	N â€Carboxyanhydride Polymerization of Glycopolypeptides That Activate Antigenâ€Presenting Cells through Dectinâ€1 and Dectinâ€2. Angewandte Chemie, 2018, 130, 3191-3196.	1.6	3
400	Enhanced Bactericidal Effects of Pyrazinamide Toward <i>Mycobacterium smegmatis</i> and <i>Mycobacterium tuberculosis</i> upon Conjugation to a {Au(I)-triphenylphosphine} ⁺ Moiety. ACS Omega, 2020, 5, 6826-6833.	1.6	3
401	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of the American Chemical Society, 2020, 142, 8059-8060.	6.6	3
402	Chemistry Is Central to Repairing Genes and Global Health: Reflections on the 2015 Nobel Prizes in Chemistry and Physiology or Medicine. ACS Central Science, 2015, 1, 343-344.	5.3	2
403	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Nano, 2020, 14, 5151-5152.	7.3	2
404	Immunoglobulin E sialylation regulates allergic responses. Immunology and Cell Biology, 2020, 98, 617-619.	1.0	2
405	Confronting Racism in Chemistry Journals. ACS Nano, 2020, 14, 7675-7677.	7.3	2
406	Confronting Racism in Chemistry Journals. Chemical Reviews, 2020, 120, 5795-5797.	23.0	2
407	Functional Hydrogel-Biomineral Composites Inspired by Natural Bone. ACS Symposium Series, 2005, , 96-106.	0.5	1
408	Postdoc Labor Love. ACS Central Science, 2016, 2, 359-360.	5.3	1
409	Back to the Lecture. ACS Central Science, 2016, 2, 483-485.	5.3	1
410	A Sugar Cloak of Invisibility. Biochemistry, 2019, 58, 2385-2386.	1.2	1
411	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Energy Letters, 2020, 5, 1610-1611.	8.8	1
412	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science and Technology Letters, 2020, 7, 280-281.	3.9	1
413	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Education, 2020, 97, 1217-1218.	1.1	1
414	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry Letters, 2020, 11, 5279-5281.	2.1	1

#	Article	IF	CITATIONS
415	Confronting Racism in Chemistry Journals. ACS Central Science, 2020, 6, 1012-1014.	5.3	1
416	Confronting Racism in Chemistry Journals. Journal of the American Society for Mass Spectrometry, 2020, 31, 1321-1323.	1.2	1
417	Confronting Racism in Chemistry Journals. Crystal Growth and Design, 2020, 20, 4201-4203.	1.4	1
418	Confronting Racism in Chemistry Journals. ACS Catalysis, 2020, 10, 7307-7309.	5.5	1
419	Confronting Racism in Chemistry Journals. Journal of the American Chemical Society, 2020, 142, 11319-11321.	6.6	1
420	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry B, 2020, 124, 5335-5337.	1.2	1
421	Update to Our Reader, Reviewer, and Author Communities—April 2020. Crystal Growth and Design, 2020, 20, 2817-2818.	1.4	1
422	Confronting Racism in Chemistry Journals. ACS Biomaterials Science and Engineering, 2020, 6, 3690-3692.	2.6	1
423	Confronting Racism in Chemistry Journals. ACS Omega, 2020, 5, 14857-14859.	1.6	1
424	Design, Synthesis, Action! Molecular Machines Take the 2016 Nobel Prize in Chemistry. ACS Central Science, 2016, 2, 674-675.	5.3	1
425	Confronting Racism in Chemistry Journals. Molecular Pharmaceutics, 2020, 17, 2229-2231.	2.3	1
426	Confronting Racism in Chemistry Journals. ACS Chemical Neuroscience, 2020, 11, 1852-1854.	1.7	1
427	Transparent Peer Review: A Look Inside the Peer Review Process. ACS Central Science, 2021, 7, 1771-1772.	5.3	1
428	Innentitelbild: Conformational Transitions at an S-Layer Growing Boundary Resolved by Cryo-TEM (Angew. Chem. 18/2013). Angewandte Chemie, 2013, 125, 4796-4796.	1.6	0
429	Advice for "Hunting Seasonâ€: ACS Central Science, 2015, 1, 464-465.	5.3	Ο
430	On Being a Closer. ACS Central Science, 2015, 1, 217-218.	5.3	0
431	lt's about the Students. ACS Central Science, 2015, 1, 279-280.	5.3	0
432	A Meeting Full of Firsts. ACS Central Science, 2015, 1, 57-57.	5.3	0

#	Article	IF	CITATIONS
433	On the Move. ACS Central Science, 2015, 1, 157-158.	5.3	Ο
434	A Season of Giving to Science. ACS Central Science, 2016, 2, 872-873.	5.3	0
435	Exercise Your Brain. ACS Central Science, 2016, 2, 430-431.	5.3	Ο
436	Happy Birthday ACS Central Science!. ACS Central Science, 2016, 2, 117-118.	5.3	0
437	Miraculous Chemistry on the Han River. ACS Central Science, 2017, 3, 360-361.	5.3	0
438	A Model for Accelerating Patient-to-Bench Research. ACS Central Science, 2017, 3, 1129-1130.	5.3	0
439	TMIC-43. A TENSION-MEDIATED GLYCOCALYX FEEDBACK LOOP PROMOTES A MESENCHYMAL, STEM-LIKE PHENOTYPE IN GLIOBLASTOMA. Neuro-Oncology, 2018, 20, vi265-vi266.	0.6	Ο
440	Is the Nobel Prize in Chemistry Having a Boston Red Sox Moment?. ACS Central Science, 2018, 4, 1291-1291.	5.3	0
441	Quantitative Super-Resolution Imaging Reveals Mammalian Glycocalyx Dynamics. Biophysical Journal, 2018, 114, 537a-538a.	0.2	Ο
442	Protecting Groups: Strategies and Applications in Carbohydrate Chemistry. Herausgegeben von Sébastien Vidal Angewandte Chemie, 2019, 131, 13762-13762.	1.6	0
443	Confronting Racism in Chemistry Journals. ACS Pharmacology and Translational Science, 2020, 3, 559-561.	2.5	Ο
444	Confronting Racism in Chemistry Journals. Biochemistry, 2020, 59, 2313-2315.	1.2	0
445	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Biomaterials Science and Engineering, 2020, 6, 2707-2708.	2.6	Ο
446	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Central Science, 2020, 6, 589-590.	5.3	0
447	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Chemical Biology, 2020, 15, 1282-1283.	1.6	Ο
448	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Chemical Neuroscience, 2020, 11, 1196-1197.	1.7	0
449	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Earth and Space Chemistry, 2020, 4, 672-673	1.2	0
450	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Macro Letters, 2020, 9, 666-667.	2.3	0

#	Article	IF	CITATIONS
451	Update to Our Reader, Reviewer, and Author Communities—April 2020. , 2020, 2, 563-564.		0
452	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Photonics, 2020, 7, 1080-1081.	3.2	0
453	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Pharmacology and Translational Science, 2020, 3, 455-456.	2.5	0
454	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sustainable Chemistry and Engineering, 2020, 8, 6574-6575.	3.2	0
455	Update to Our Reader, Reviewer, and Author Communities—April 2020. Analytical Chemistry, 2020, 92, 6187-6188.	3.2	Ο
456	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemistry of Materials, 2020, 32, 3678-3679.	3.2	0
457	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Proteome Research, 2020, 19, 1883-1884.	1.8	0
458	Confronting Racism in Chemistry Journals. Langmuir, 2020, 36, 7155-7157.	1.6	0
459	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Polymer Materials, 2020, 2, 1739-1740.	2.0	0
460	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Combinatorial Science, 2020, 22, 223-224.	3.8	0
461	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Medicinal Chemistry Letters, 2020, 11, 1060-1061.	1.3	0
462	Editorial Confronting Racism in Chemistry Journals. , 2020, 2, 829-831.		0
463	Confronting Racism in Chemistry Journals. ACS Applied Energy Materials, 2020, 3, 6016-6018.	2.5	Ο
464	Confronting Racism in Chemistry Journals. Industrial & Engineering Chemistry Research, 2020, 59, 11915-11917.	1.8	0
465	Confronting Racism in Chemistry Journals. Journal of Natural Products, 2020, 83, 2057-2059.	1.5	Ο
466	Confronting Racism in Chemistry Journals. ACS Medicinal Chemistry Letters, 2020, 11, 1354-1356.	1.3	0
467	Confronting Racism in Chemistry Journals. Energy & amp; Fuels, 2020, 34, 7771-7773.	2.5	0
468	Confronting Racism in Chemistry Journals. ACS Sensors, 2020, 5, 1858-1860.	4.0	0

#	Article	IF	CITATIONS
469	Update to Our Reader, Reviewer, and Author Communities—April 2020. Biochemistry, 2020, 59, 1641-1642.	1.2	0
470	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical & Engineering Data, 2020, 65, 2253-2254.	1.0	0
471	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Process Research and Development, 2020, 24, 872-873.	1.3	0
472	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Omega, 2020, 5, 9624-9625.	1.6	0
473	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Electronic Materials, 2020, 2, 1184-1185.	2.0	0
474	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry C, 2020, 124, 9629-9630.	1.5	0
475	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry Letters, 2020, 11, 3571-3572.	2.1	Ο
476	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Synthetic Biology, 2020, 9, 979-980.	1.9	0
477	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Energy Materials, 2020, 3, 4091-4092.	2.5	0
478	Confronting Racism in Chemistry Journals. Journal of Chemical Theory and Computation, 2020, 16, 4003-4005.	2.3	0
479	Confronting Racism in Chemistry Journals. Journal of Organic Chemistry, 2020, 85, 8297-8299.	1.7	0
480	Confronting Racism in Chemistry Journals. Analytical Chemistry, 2020, 92, 8625-8627.	3.2	0
481	Confronting Racism in Chemistry Journals. Journal of Chemical Education, 2020, 97, 1695-1697.	1.1	Ο
482	Confronting Racism in Chemistry Journals. Organic Process Research and Development, 2020, 24, 1215-1217.	1.3	0
483	Confronting Racism in Chemistry Journals. ACS Sustainable Chemistry and Engineering, 2020, 8, .	3.2	0
484	Confronting Racism in Chemistry Journals. Chemistry of Materials, 2020, 32, 5369-5371.	3.2	0
485	Confronting Racism in Chemistry Journals. Chemical Research in Toxicology, 2020, 33, 1511-1513.	1.7	0
486	Confronting Racism in Chemistry Journals. Inorganic Chemistry, 2020, 59, 8639-8641.	1.9	0

28

#	Article	IF	CITATIONS
487	Confronting Racism in Chemistry Journals. ACS Applied Nano Materials, 2020, 3, 6131-6133.	2.4	Ο
488	Confronting Racism in Chemistry Journals. ACS Applied Polymer Materials, 2020, 2, 2496-2498.	2.0	0
489	Confronting Racism in Chemistry Journals. ACS Chemical Biology, 2020, 15, 1719-1721.	1.6	О
490	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Theory and Computation, 2020, 16, 2881-2882.	2.3	0
491	Confronting Racism in Chemistry Journals. Biomacromolecules, 2020, 21, 2543-2545.	2.6	Ο
492	Confronting Racism in Chemistry Journals. Journal of Medicinal Chemistry, 2020, 63, 6575-6577.	2.9	0
493	Confronting Racism in Chemistry Journals. Macromolecules, 2020, 53, 5015-5017.	2.2	Ο
494	Confronting Racism in Chemistry Journals. Organometallics, 2020, 39, 2331-2333.	1.1	0
495	Confronting Racism in Chemistry Journals. Accounts of Chemical Research, 2020, 53, 1257-1259.	7.6	Ο
496	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry A, 2020, 124, 5271-5273.	1.1	0
497	Confronting Racism in Chemistry Journals. ACS Energy Letters, 2020, 5, 2291-2293.	8.8	Ο
498	Confronting Racism in Chemistry Journals. Journal of Chemical Information and Modeling, 2020, 60, 3325-3327.	2.5	0
499	Confronting Racism in Chemistry Journals. Journal of Proteome Research, 2020, 19, 2911-2913.	1.8	0
500	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Agricultural and Food Chemistry, 2020, 68, 5019-5020.	2.4	0
501	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry B, 2020, 124, 3603-3604.	1.2	Ο
502	Confronting Racism in Chemistry Journals. Bioconjugate Chemistry, 2020, 31, 1693-1695.	1.8	0
503	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Nano Materials, 2020, 3, 3960-3961.	2.4	0
504	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Natural Products, 2020, 83, 1357-1358.	1.5	0

#	Article	IF	CITATIONS
505	Confronting Racism in Chemistry Journals. ACS Synthetic Biology, 2020, 9, 1487-1489.	1.9	0
506	Confronting Racism in Chemistry Journals. Journal of Chemical & Engineering Data, 2020, 65, 3403-3405.	1.0	0
507	Update to Our Reader, Reviewer, and Author Communities—April 2020. Bioconjugate Chemistry, 2020, 31, 1211-1212.	1.8	0
508	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Health and Safety, 2020, 27, 133-134.	1.1	0
509	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemical Research in Toxicology, 2020, 33, 1509-1510.	1.7	0
510	Update to Our Reader, Reviewer, and Author Communities—April 2020. Energy & Fuels, 2020, 34, 5107-5108.	2.5	0
511	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Bio Materials, 2020, 3, 2873-2874.	2.3	0
512	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Organic Chemistry, 2020, 85, 5751-5752.	1.7	0
513	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of the American Society for Mass Spectrometry, 2020, 31, 1006-1007.	1.2	0
514	Update to Our Reader, Reviewer, and Author Communities—April 2020. Accounts of Chemical Research, 2020, 53, 1001-1002.	7.6	0
515	Update to Our Reader, Reviewer, and Author Communities—April 2020. Biomacromolecules, 2020, 21, 1966-1967.	2.6	0
516	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemical Reviews, 2020, 120, 3939-3940.	23.0	0
517	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science & Technology, 2020, 54, 5307-5308.	4.6	0
518	Update to Our Reader, Reviewer, and Author Communities—April 2020. Langmuir, 2020, 36, 4565-4566.	1.6	0
519	Update to Our Reader, Reviewer, and Author Communities—April 2020. Molecular Pharmaceutics, 2020, 17, 1445-1446.	2.3	0
520	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Infectious Diseases, 2020, 6, 891-892.	1.8	0
521	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Medicinal Chemistry, 2020, 63, 4409-4410.	2.9	0
522	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry A, 2020, 124, 3501-3502.	1.1	0

#	Article	IF	CITATIONS
523	Update to Our Reader, Reviewer, and Author Communities—April 2020. Nano Letters, 2020, 20, 2935-2936.	4.5	0
524	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sensors, 2020, 5, 1251-1252.	4.0	0
525	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Information and Modeling, 2020, 60, 2651-2652.	2.5	Ο
526	Update to Our Reader, Reviewer, and Author Communities—April 2020. Industrial & Engineering Chemistry Research, 2020, 59, 8509-8510.	1.8	0
527	Update to Our Reader, Reviewer, and Author Communities—April 2020. Inorganic Chemistry, 2020, 59, 5796-5797.	1.9	0
528	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organometallics, 2020, 39, 1665-1666.	1.1	0
529	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Letters, 2020, 22, 3307-3308.	2.4	Ο
530	Introducing "In Focusâ€; Community Resources Accelerating Science. ACS Central Science, 2020, 6, 446-447.	5.3	0
531	Confronting Racism in Chemistry Journals. ACS ES&T Engineering, 2021, 1, 3-5.	3.7	0
532	Confronting Racism in Chemistry Journals. ACS ES&T Water, 2021, 1, 3-5.	2.3	0
533	A Chemical Glycoproteomics Platform Applied to Human Prostate Cancer. FASEB Journal, 2015, 29, 567.14.	0.2	0
534	A Chemical Glycoproteomics Platform To study the Human Prostate Secretome. FASEB Journal, 2016, 30,	0.2	0
535	A Novel CSF3R Mutation Uncovers the Importance of Membrane-Proximal N-Glycosylation for Receptor Regulation. Blood, 2016, 128, 3141-3141.	0.6	0
536	Confronting Racism in Chemistry Journals. ACS Applied Electronic Materials, 2020, 2, 1774-1776.	2.0	0
537	Confronting Racism in Chemistry Journals. Journal of Agricultural and Food Chemistry, 2020, 68, 6941-6943.	2.4	0
538	Confronting Racism in Chemistry Journals. ACS Earth and Space Chemistry, 2020, 4, 961-963.	1.2	0
539	Confronting Racism in Chemistry Journals. Environmental Science and Technology Letters, 2020, 7, 447-449.	3.9	0
540	Confronting Racism in Chemistry Journals. ACS Combinatorial Science, 2020, 22, 327-329.	3.8	0

#	Article	IF	CITATIONS
541	Confronting Racism in Chemistry Journals. ACS Infectious Diseases, 2020, 6, 1529-1531.	1.8	0
542	Confronting Racism in Chemistry Journals. ACS Applied Bio Materials, 2020, 3, 3925-3927.	2.3	0
543	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry C, 2020, 124, 14069-14071.	1.5	0
544	Confronting Racism in Chemistry Journals. ACS Macro Letters, 2020, 9, 1004-1006.	2.3	0
545	Confronting Racism in Chemistry Journals. ACS Photonics, 2020, 7, 1586-1588.	3.2	0
546	Confronting Racism in Chemistry Journals. Environmental Science & Technology, 2020, 54, 7735-7737.	4.6	0
547	Confronting Racism in Chemistry Journals. Journal of Chemical Health and Safety, 2020, 27, 198-200.	1.1	0
548	Transparent Peer Review: A Look Inside the Peer Review Process. Journal of Physical Chemistry Letters, 2021, 12, 10861-10862.	2.1	0
549	Sensitivity optimisation of tuberculosis bioaerosol sampling. , 2020, 15, e0238193.		0
550	Sensitivity optimisation of tuberculosis bioaerosol sampling. , 2020, 15, e0238193.		0
551	Sensitivity optimisation of tuberculosis bioaerosol sampling. , 2020, 15, e0238193.		0
552	Sensitivity optimisation of tuberculosis bioaerosol sampling. , 2020, 15, e0238193.		0
553	Sensitivity optimisation of tuberculosis bioaerosol sampling. , 2020, 15, e0238193.		0
554	Sensitivity optimisation of tuberculosis bioaerosol sampling. , 2020, 15, e0238193.		0
555	Ferroptosis Regulation by the NGLY1/NFE2L1 Pathway. FASEB Journal, 2022, 36, .	0.2	0