
Yoann Rombouts

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9327494/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Developments and perspectives in high-throughput protein glycomics: enabling the analysis of thousands of samples. Glycobiology, 2022, 32, 651-663.	1.3	24
2	Human NLRP1 is a sensor of pathogenic coronavirus 3CL proteases in lung epithelial cells. Molecular Cell, 2022, 82, 2385-2400.e9.	4.5	61
3	Host phospholipid peroxidation fuels ExoU-dependent cell necrosis and supports Pseudomonas aeruginosa-driven pathology. PLoS Pathogens, 2021, 17, e1009927.	2.1	10
4	Characterization of Macrophage Galactose-type Lectin (MGL) ligands in colorectal cancer cell lines. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129513.	1.1	22
5	N-Glycoproteins Have a Major Role in MGL Binding to Colorectal Cancer Cell Lines: Associations with Overall Proteome Diversity. International Journal of Molecular Sciences, 2020, 21, 5522.	1.8	11
6	Host-Derived Lipids from Tuberculous Pleurisy Impair Macrophage Microbicidal-Associated Metabolic Activity. Cell Reports, 2020, 33, 108547.	2.9	18
7	N-Glycomic and Transcriptomic Changes Associated with CDX1 mRNA Expression in Colorectal Cancer Cell Lines. Cells, 2019, 8, 273.	1.8	17
8	Fra1 Controls Rheumatoid Factor Autoantibody Production by Bone Marrow Plasma Cells and the Development of Autoimmune Bone Loss. Journal of Bone and Mineral Research, 2019, 34, 1352-1365.	3.1	10
9	Glycoproteomic Analysis of MGL-Binding Proteins on Acute T-Cell Leukemia Cells. Journal of Proteome Research, 2019, 18, 1125-1132.	1.8	18
10	ACPA lgG galactosylation associates with disease activity in pregnant patients with rheumatoid arthritis. Annals of the Rheumatic Diseases, 2018, 77, annrheumdis-2018-212946.	0.5	31
11	Adaptive antibody diversification through <i>N</i> -linked glycosylation of the immunoglobulin variable region. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1901-1906.	3.3	98
12	Fc gamma receptor binding profile of anti-citrullinated protein antibodies in immune complexes suggests a role for Fcl̂3RI in the pathogenesis of synovial inflammation. Clinical and Experimental Rheumatology, 2018, 36, 284-293.	0.4	6
13	Glycosylation Changes Triggered by the Differentiation of Monocytic THP-1 Cell Line into Macrophages. Journal of Proteome Research, 2017, 16, 156-169.	1.8	35
14	Structural Analysis of Variable Domain Glycosylation of Anti-Citrullinated Protein Antibodies in Rheumatoid Arthritis Reveals the Presence of Highly Sialylated Glycans. Molecular and Cellular Proteomics, 2017, 16, 278-287.	2.5	82
15	High-Throughput and High-Sensitivity Mass Spectrometry-Based N-Glycomics of Mammalian Cells. Methods in Molecular Biology, 2017, 1503, 185-196.	0.4	9
16	Regulation of autoantibody activity by the IL-23–TH17 axis determines the onset of autoimmune disease. Nature Immunology, 2017, 18, 104-113.	7.0	274
17	Pregnancy-associated serum N-glycome changes studied by high-throughput MALDI-TOF-MS. Scientific Reports, 2016, 6, 23296.	1.6	54
18	N-glycosylation Profiling of Colorectal Cancer Cell Lines Reveals Association of Fucosylation with Differentiation and Caudal Type Homebox 1 (CDX1)/Villin mRNA Expression. Molecular and Cellular Proteomics, 2016, 15, 124-140.	2.5	72

YOANN ROMBOUTS

#	Article	IF	CITATIONS
19	Murine Plasma <i>N</i> -Glycosylation Traits Associated with Sex and Strain. Journal of Proteome Research, 2016, 15, 3489-3499.	1.8	24
20	Extensive glycosylation of ACPA-IgG variable domains modulates binding to citrullinated antigens in rheumatoid arthritis. Annals of the Rheumatic Diseases, 2016, 75, 578-585.	0.5	161
21	Recent Advances in Clinical Glycoproteomics of Immunoglobulins (Igs). Molecular and Cellular Proteomics, 2016, 15, 2217-2228.	2.5	54
22	The Emerging Importance of IgG Fab Glycosylation in Immunity. Journal of Immunology, 2016, 196, 1435-1441.	0.4	234
23	Acute phase inflammation is characterized by rapid changes in plasma/peritoneal fluid N-glycosylation in mice. Glycoconjugate Journal, 2016, 33, 457-470.	1.4	18
24	Revisiting Plant Plasma Membrane Lipids in Tobacco: A Focus on Sphingolipids. Plant Physiology, 2016, 170, 367-384.	2.3	137
25	Identification and characterisation of citrullinated antigen-specific B cells in peripheral blood of patients with rheumatoid arthritis. Annals of the Rheumatic Diseases, 2016, 75, 1170-1176.	0.5	72
26	Glycosylation Characteristics of Colorectal Cancer. Advances in Cancer Research, 2015, 126, 203-256.	1.9	120
27	Mass spectrometry for glycosylation analysis of biopharmaceuticals. TrAC - Trends in Analytical Chemistry, 2015, 73, 1-9.	5.8	67
28	Hinge-Region O-Glycosylation of Human Immunoglobulin G3 (IgG3). Molecular and Cellular Proteomics, 2015, 14, 1373-1384.	2.5	90
29	Glycosylation of immunoglobulin G determines osteoclast differentiation and bone loss. Nature Communications, 2015, 6, 6651.	5.8	212
30	Anti-citrullinated protein antibodies acquire a pro-inflammatory Fc glycosylation phenotype prior to the onset of rheumatoid arthritis. Annals of the Rheumatic Diseases, 2015, 74, 234-241.	0.5	225
31	Immunoglobulin G (IgG) Fab Glycosylation Analysis Using a New Mass Spectrometric High-throughput Profiling Method Reveals Pregnancy-associated Changes. Molecular and Cellular Proteomics, 2014, 13, 3029-3039.	2.5	216
32	Increased Phagocytosis of Mycobacterium marinum Mutants Defective in Lipooligosaccharide Production. Journal of Biological Chemistry, 2014, 289, 215-228.	1.6	29
33	Site-Specific N-Glycosylation Analysis of Human Immunoglobulin E. Journal of Proteome Research, 2014, 13, 536-546.	1.8	85
34	A1.2â€High Throughput analysis of IGG fab glycosylation reveals differences between RA-patients and healthy controls during pregnancy and after delivery. Annals of the Rheumatic Diseases, 2014, 73, A1.2-A1.	0.5	2
35	Circulating plasmablasts/plasmacells as a source of anticitrullinated protein antibodies in patients with rheumatoid arthritis. Annals of the Rheumatic Diseases, 2013, 72, 1259-1263.	0.5	69
36	Adipocyteâ€derived lipids modulate CD4 ⁺ Tâ€cell function. European Journal of Immunology, 2013, 43, 1578-1587.	1.6	71

YOANN ROMBOUTS

#	Article	IF	CITATIONS
37	Glycoproteomic Analysis of Antibodies. Molecular and Cellular Proteomics, 2013, 12, 856-865.	2.5	146
38	A4.2â€Adipocytes Modulate T Cell Function through Release of Lipids. Annals of the Rheumatic Diseases, 2013, 72, A24.1-A24.	0.5	0
39	A5.29â€Spontaneous Production of Anti-Citrullinated Protein Antibodies in Cultures of Peripheral Blood Mononuclear Cells and Synovial Fluid Mononuclear Cells Isolated from Patients with Rheumatoid Arthritis. Annals of the Rheumatic Diseases, 2013, 72, A41.1-A41.	0.5	0
40	Exposure of Mycobacteria to Cell Wall-inhibitory Drugs Decreases Production of Arabinoglycerolipid Related to Mycolyl-arabinogalactan-peptidoglycan Metabolism. Journal of Biological Chemistry, 2012, 287, 11060-11069.	1.6	36
41	Structural Determination and Toll-like Receptor 2-dependent Proinflammatory Activity of Dimycolyl-diarabino-glycerol from Mycobacterium marinum*. Journal of Biological Chemistry, 2012, 287, 34432-34444.	1.6	15
42	The ganglioside GD2 induces the constitutive activation of c-Met in MDA-MB-231 breast cancer cells expressing the GD3 synthase. Glycobiology, 2012, 22, 806-816.	1.3	83
43	Identification of the Mycobacterium marinum Apa antigen O-mannosylation sites reveals important glycosylation variability with the M. tuberculosis Apa homologue. Journal of Proteomics, 2012, 75, 5695-5705.	1.2	8
44	Expression of GD3 synthase modifies ganglioside profile and increases migration of MCF-7 breast cancer cells. Comptes Rendus Chimie, 2012, 15, 3-14.	0.2	7
45	Accumulation of Unusual Gangliosides GQ3 and GP3 in Breast Cancer Cells Expressing the GD3 Synthase. Molecules, 2012, 17, 9559-9572.	1.7	22
46	A <i>Mycobacterium marinum</i> TesA mutant defective for major cell wallâ€associated lipids is highly attenuated in <i>Dictyostelium discoideum</i> and zebrafish embryos. Molecular Microbiology, 2011, 80, 919-934.	1.2	82
47	Environmental and Biofilm-dependent Changes in a Bacillus cereus Secondary Cell Wall Polysaccharide*. Journal of Biological Chemistry, 2011, 286, 31250-31262.	1.6	33
48	Fatty Acyl Chains of Mycobacterium marinum Lipooligosaccharides. Journal of Biological Chemistry, 2011, 286, 33678-33688.	1.6	34
49	Structural Analysis of an Unusual BioactiveN-Acylated Lipo-Oligosaccharide LOS-IV inMycobacterium marinum. Journal of the American Chemical Society, 2010, 132, 16073-16084.	6.6	27
50	Mycobacterium marinum Lipooligosaccharides Are Unique Caryophyllose-containing Cell Wall Glycolipids That Inhibit Tumor Necrosis Factor-1± Secretion in Macrophages. Journal of Biological Chemistry, 2009, 284, 20975-20988.	1.6	38