Luciano Boesel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9327379/publications.pdf Version: 2024-02-01

LUCIANO ROESEL

#	Article	IF	CITATIONS
1	Amphiphilic Polymer Coâ€Network: A Versatile Matrix for Tailoring the Photonic Energy Transfer in Wearable Energy Harvesting Devices. Advanced Energy Materials, 2022, 12, .	10.2	10
2	Thioflavin-modified molecularly imprinted hydrogel for fluorescent-based non-enzymatic glucose detection in wound exudate. Materials Today Bio, 2022, 14, 100258.	2.6	6
3	Donor–Acceptor Stenhouse Adductâ€Polydimethylsiloxane onjugates for Enhanced Photoswitching in Bulk Polymers. Macromolecular Rapid Communications, 2022, 43, e2200120.	2.0	7
4	pH-responsive silica nanoparticles for the treatment of skin wound infections. Acta Biomaterialia, 2022, 145, 172-184.	4.1	32
5	Promoting the Furan Ringâ€Opening Reaction to Access New Donor–Acceptor Stenhouse Adducts with Hexafluoroisopropanol. Angewandte Chemie - International Edition, 2021, 60, 10219-10227.	7.2	28
6	Promoting the Furan Ringâ€Opening Reaction to Access New Donor–Acceptor Stenhouse Adducts with Hexafluoroisopropanol. Angewandte Chemie, 2021, 133, 10307-10315.	1.6	6
7	Metal-Modified Montmorillonite as Plasmonic Microstructure for Direct Protein Detection. Sensors, 2021, 21, 2655.	2.1	14
8	Luminescent solar concentrator utilizing energy transfer paired aggregationâ€induced emissive fluorophores. International Journal of Energy Research, 2021, 45, 17971-17981.	2.2	12
9	Recent advances in photoluminescent polymer optical fibers. Current Opinion in Solid State and Materials Science, 2021, 25, 100912.	5.6	21
10	Scalable production of magnetic fluorescent cellulose microparticles. Cellulose, 2021, 28, 7675-7685.	2.4	3
11	Changes in Optical Properties upon Dye–Clay Interaction: Experimental Evaluation and Applications. Nanomaterials, 2021, 11, 197.	1.9	7
12	Energy harvesting textiles: using wearable luminescent solar concentrators to improve the efficiency of fiber solar cells. Journal of Materials Chemistry A, 2021, 9, 25974-25981.	5.2	10
13	Experimental determination and ray-tracing simulation of bending losses in melt-spun polymer optical fibres. Scientific Reports, 2020, 10, 11885.	1.6	10
14	Nano-domains assisted energy transfer in amphiphilic polymer conetworks for wearable luminescent solar concentrators. Nano Energy, 2020, 76, 105039.	8.2	29
15	Facile Fabrication of Microfluidic Chips for 3D Hydrodynamic Focusing and Wet Spinning of Polymeric Fibers. Polymers, 2020, 12, 633.	2.0	10
16	Electrospun colourimetric sensors for detecting volatile amines. Sensors and Actuators B: Chemical, 2020, 322, 128570.	4.0	23
17	Luminescent solar concentrators based on melt-spun polymer optical fibers. Materials and Design, 2020, 189, 108518.	3.3	29
18	CHAPTER 15. Functional Membranes Based on Amphiphilic Polymer Co-networks. RSC Polymer Chemistry Series, 2020, , 331-363.	0.1	3

LUCIANO BOESEL

#	Article	IF	CITATIONS
19	Pyranineâ€Modified Amphiphilic Polymer Conetworks as Fluorescent Ratiometric pH Sensors. Macromolecular Rapid Communications, 2019, 40, e1900360.	2.0	32
20	Polyphenols as Morphogenetic Agents for the Controlled Synthesis of Mesoporous Silica Nanoparticles. Chemistry of Materials, 2019, 31, 3192-3200.	3.2	15
21	Optical glucose sensing using ethanolamine–polyborate complexes. Journal of Materials Chemistry B, 2018, 6, 816-823.	2.9	8
22	Polymer optical fibres in healthcare: solutions, applications and implications. A perspective. Polymer International, 2018, 67, 1150-1154.	1.6	8
23	Wavelength-Selective Light-Responsive DASA-Functionalized Polymersome Nanoreactors. Journal of the American Chemical Society, 2018, 140, 8027-8036.	6.6	137
24	Wide Range of Functionalized Poly(<i>N</i> -alkyl acrylamide)-Based Amphiphilic Polymer Conetworks via Active Ester Precursors. Macromolecules, 2018, 51, 5267-5277.	2.2	22
25	Optimization of novel melt-extruded polymer optical fibers designed for pressure sensor applications. European Polymer Journal, 2017, 88, 44-55.	2.6	22
26	Body-monitoring with photonic textiles: a reflective heartbeat sensor based on polymer optical fibres. Journal of the Royal Society Interface, 2017, 14, 20170060.	1.5	31
27	The pyranine-benzalkonium ion pair: A promising fluorescent system for the ratiometric detection of wound pH. Sensors and Actuators B: Chemical, 2017, 249, 156-160.	4.0	38
28	Visible Light-Responsive DASA-Polymer Conjugates. ACS Macro Letters, 2017, 6, 738-742.	2.3	58
29	Carbon dots and fluorescein: The ideal FRET pair for the fabrication of a precise and fully reversible ammonia sensor. Sensors and Actuators B: Chemical, 2017, 253, 714-722.	4.0	22
30	Simultaneous detection of pH value and glucose concentrations for wound monitoring applications. Biosensors and Bioelectronics, 2017, 87, 312-319.	5.3	75
31	POF-yarn weaves: controlling the light out-coupling of wearable phototherapy devices. Biomedical Optics Express, 2017, 8, 4316.	1.5	41
32	Carbon Dots and Fluorescein: The Ideal FRET Pair for the Fabrication of a Precise and Fully Reversible Ammonia Sensor. Proceedings (mdpi), 2017, 1, 488.	0.2	1
33	Polylactide/Montmorillonite Hybrid Latex as a Barrier Coating for Paper Applications. Polymers, 2016, 8, 75.	2.0	17
34	Preparation of ellipsoid-shaped supraparticles with modular compositions and investigation of shape-dependent cell-uptake. RSC Advances, 2016, 6, 89028-89039.	1.7	15
35	Using ANOVA Models To Compare and Optimize Extraction Protocols of P3HBHV from <i>Cupriavidus necator</i> . Industrial & Engineering Chemistry Research, 2016, 55, 10355-10365.	1.8	16
36	2,2′:6′,2′′-Terpyridine-functionalized redox-responsive hydrogels as a platform for multi responsive amphiphilic polymer membranes. RSC Advances, 2016, 6, 97921-97930.	1.7	11

LUCIANO BOESEL

#	Article	IF	CITATIONS
37	Encapsulation of FRET-based glucose and maltose biosensors to develop functionalized silica nanoparticles. Analyst, The, 2016, 141, 3982-3984.	1.7	13
38	Embroidered Electrode with Silver/Titanium Coating for Long-Term ECG Monitoring. Sensors, 2015, 15, 1750-1759.	2.1	102
39	Flexible touch sensors based on nanocomposites embedding polymeric optical fibers for artificial skin applications. , 2015, , .		3
40	Incorporation of a FRET dye pair into mesoporous materials: a comparison of fluorescence spectra, FRET activity and dye accessibility. Analyst, The, 2015, 140, 5324-5334.	1.7	20
41	ATRP-based synthesis and characterization of light-responsive coatings for transdermal delivery systems. Science and Technology of Advanced Materials, 2015, 16, 034604.	2.8	17
42	Ellipsoid-shaped superparamagnetic nanoclusters through emulsion electrospinning. Chemical Communications, 2015, 51, 3758-3761.	2.2	11
43	Bodyâ€Monitoring and Health Supervision by Means of Optical Fiberâ€Based Sensing Systems in Medical Textiles. Advanced Healthcare Materials, 2015, 4, 330-355.	3.9	116
44	Effect of plasticizers on the barrier and mechanical properties of biomimetic composites of chitosan and clay. Carbohydrate Polymers, 2015, 115, 356-363.	5.1	37
45	Development of a luminous textile for reflective pulse oximetry measurements. Biomedical Optics Express, 2014, 5, 2537.	1.5	55
46	An Optical Fibre-Based Sensor for Respiratory Monitoring. Sensors, 2014, 14, 13088-13101.	2.1	103
47	The effect of molecular weight on the material properties of biosynthesized poly(4-hydroxybutyrate). International Journal of Biological Macromolecules, 2014, 71, 124-130.	3.6	27
48	Effect of PLA crystallization on the structure of biomimetic composites of PLA and clay. Journal of Applied Polymer Science, 2013, 129, 1109-1116.	1.3	12
49	Micropatterning of Bioactive Glass Nanoparticles on Chitosan Membranes for Spatial Controlled Biomineralization. Langmuir, 2012, 28, 6970-6977.	1.6	43
50	Bioinspired Actuated Adhesive Patterns of Liquid Crystalline Elastomers. Advanced Materials, 2012, 24, 4601-4604.	11.1	110
51	Degradation studies of hydrophilic, partially degradable and bioactive cements (HDBCs) incorporating chemically modified starch. Journal of Materials Science: Materials in Medicine, 2012, 23, 667-676.	1.7	6
52	Geckoâ€Inspired Surfaces: A Path to Strong and Reversible Dry Adhesives. Advanced Materials, 2010, 22, 2125-2137.	11.1	415
53	Meltâ€based compressionâ€molded scaffolds from chitosan–polyester blends and composites: Morphology and mechanical properties. Journal of Biomedical Materials Research - Part A, 2009, 91A, 489-504.	2.1	89
54	Innovative Approach for Producing Injectable, Biodegradable Materials Using Chitooligosaccharides and Green Chemistry. Biomacromolecules, 2009, 10, 465-470.	2.6	18

LUCIANO BOESEL

#	Article	IF	CITATIONS
55	A review on the polymer properties of Hydrophilic, partially Degradable and Bioactive acrylic Cements (HDBC). Progress in Polymer Science, 2008, 33, 180-190.	11.8	46
56	Modifications of bone cements. , 2008, , 332-357.		3
57	Cork: properties, capabilities and applications. International Materials Reviews, 2008, 53, 256-256.	9.4	19
58	Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. Journal of the Royal Society Interface, 2007, 4, 999-1030.	1.5	969
59	The in vitro bioactivity of two novel hydrophilic, partially degradable bone cements. Acta Biomaterialia, 2007, 3, 175-182.	4.1	26
60	Incorporation of α-Amylase Enzyme and a Bioactive Filler into Hydrophilic, Partially Degradable, and Bioactive Cements (HDBCs) as a New Approach To Tailor Simultaneously Their Degradation and Bioactive Behavior. Biomacromolecules, 2006, 7, 2600-2609.	2.6	15
61	The effect of water uptake on the behaviour of hydrophilic cements in confined environments. Biomaterials, 2006, 27, 5627-5633.	5.7	22
62	Properties of melt processed chitosan and aliphatic polyester blends. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 403, 57-68.	2.6	224
63	Hydroxyapatite Reinforced Chitosan and Polyester Blends for Biomedical Applications. Macromolecular Materials and Engineering, 2005, 290, 1157-1165.	1.7	63
64	Cork: properties, capabilities and applications. International Materials Reviews, 2005, 50, 345-365.	9.4	499
65	Optimization of the formulation and mechanical properties of starch based partially degradable bone cements. Journal of Materials Science: Materials in Medicine, 2004, 15, 73-83.	1.7	65
66	Hydrophilic matrices to be used as bioactive and degradable bone cements. Journal of Materials Science: Materials in Medicine, 2004, 15, 503-506.	1.7	16
67	The behavior of novel hydrophilic composite bone cements in simulated body fluids. Journal of Biomedical Materials Research Part B, 2004, 70B, 368-377.	3.0	29
68	Bioinert, biodegradable and injectable polymeric matrix composites for hard tissue replacement: state of the art and recent developments. Composites Science and Technology, 2004, 64, 789-817.	3.8	374
69	Poly(Ethylene Terephthalate)-Organoclay Nanocomposites: Morphological, Thermal and Barrier Properties. Journal of Metastable and Nanocrystalline Materials, 2004, 22, 57-64.	0.1	21
70	Hydrogels And Hydrophilic Partially Degradable Bone Cements Based On Biodegradable Blends Incorporating Starch. , 2003, , 243-260.		10
71	Poly(Ethylene Terephthalate)-Organoclay Nanocomposites: Morphological Characterization. Materials Science Forum, 2002, 403, 89-94.	0.3	5
72	ANNEALING TIME AND TEMPERATURE EFFECTS ON SORPTION PROPERTIES OF DICHLOROMETHANE IN HEXAFLUOROBISPHENOL-A–BASED POLYESTERS. Journal of Macromolecular Science - Physics, 2001, 40, 29-39.	0.4	2

#	Article	IF	CITATIONS
73	Injectable Biodegradable Systems. , 0, , 4075-4085.		0