Francisco Garcia-Molina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9327289/publications.pdf

Version: 2024-02-01

57 papers

1,833 citations

331538 21 h-index 42 g-index

62 all docs

62 docs citations

times ranked

62

2194 citing authors

#	Article	IF	CITATIONS
1	A comprehensive review on tyrosinase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 2019, 34, 279-309.	2.5	597
2	A Review on Spectrophotometric Methods for Measuring the Monophenolase and Diphenolase Activities of Tyrosinase. Journal of Agricultural and Food Chemistry, 2007, 55, 9739-9749.	2.4	126
3	Calculating molar absorptivities for quinones: Application to the measurement of tyrosinase activity. Analytical Biochemistry, 2006, 351, 128-138.	1.1	85
4	Mushroom Tyrosinase:  Catalase Activity, Inhibition, and Suicide Inactivation. Journal of Agricultural and Food Chemistry, 2005, 53, 3702-3709.	2.4	81
5	Suicide inactivation of the diphenolase and monophenolase activities of tyrosinase. IUBMB Life, 2010, 62, 539-547.	1.5	63
6	Generation of hydrogen peroxide in the melanin biosynthesis pathway. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2009, 1794, 1017-1029.	1.1	57
7	Michaelis constants of mushroom tyrosinase with respect to oxygen in the presence of monophenols and diphenols. International Journal of Biochemistry and Cell Biology, 2002, 34, 332-336.	1.2	56
8	Phenolic substrates and suicide inactivation of tyrosinase: kinetics and mechanism. Biochemical Journal, 2008, 416, 431-440.	1.7	56
9	Enzymatic and chemical oxidation of trihydroxylated phenols. Food Chemistry, 2009, 113, 435-444.	4.2	42
10	Action of Tyrosinase on Ortho-Substituted Phenols: Possible Influence on Browning and Melanogenesis. Journal of Agricultural and Food Chemistry, 2012, 60, 6447-6453.	2.4	39
11	Catalysis and inhibition of tyrosinase in the presence of cinnamic acid and some of its derivatives. International Journal of Biological Macromolecules, 2018, 119, 548-554.	3.6	37
12	PROOXIDANT AND ANTIOXIDANT ACTIVITIES OF ROSMARINIC ACID. Journal of Food Biochemistry, 2013, 37, 396-408.	1.2	35
13	Stereospecific inactivation of tyrosinase by l- and d-ascorbic acid. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2009, 1794, 244-253.	1.1	34
14	Quantification of the Antioxidant Capacity of Different Molecules and Their Kinetic Antioxidant Efficiencies. Journal of Agricultural and Food Chemistry, 2010, 58, 2062-2070.	2.4	34
15	Tyrosinase inactivation in its action on dopa. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 1467-1475.	1.1	33
16	Kinetic Characterization of the Enzymatic and Chemical Oxidation of the Catechins in Green Tea. Journal of Agricultural and Food Chemistry, 2008, 56, 9215-9224.	2.4	32
17	Enzymatic Method with Polyphenol Oxidase for the Determination of Cysteine andN-Acetylcysteine. Journal of Agricultural and Food Chemistry, 2005, 53, 6183-6189.	2.4	27
18	Kinetic Characterization of the Oxidation of Esculetin by Polyphenol Oxidase and Peroxidase. Bioscience, Biotechnology and Biochemistry, 2007, 71, 390-396.	0.6	24

#	Article	IF	Citations
19	Ellagic acid: Characterization as substrate of polyphenol oxidase. IUBMB Life, 2009, 61, 171-177.	1.5	24
20	Unravelling the suicide inactivation of tyrosinase: A discrimination between mechanisms. Journal of Molecular Catalysis B: Enzymatic, 2012, 75, 11-19.	1.8	23
21	Hydroxylation of p-substituted phenols by tyrosinase: Further insight into the mechanism of tyrosinase activity. Biochemical and Biophysical Research Communications, 2012, 424, 228-233.	1.0	22
22	Method for the determination of molar absorptivities of thiol adducts formed from diphenolic substrates of polyphenol oxidase. Analytical Biochemistry, 2002, 309, 180-185.	1.1	19
23	Differential substrate behaviour of phenol and aniline derivatives during oxidation by horseradish peroxidase: kinetic evidence for a two-step mechanism. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2004, 1699, 235-243.	1.1	19
24	Kinetic Characterization of the Oxidation of Chlorogenic Acid by Polyphenol Oxidase and Peroxidase. Characteristics of the <i>>o-</i>	2.4	17
25	Reaction mechanism to explain the high kinetic autoactivation of tyrosinase. Journal of Molecular Catalysis B: Enzymatic, 2005, 33, 35-42.	1.8	16
26	Unification for the Expression of the Monophenolase and Diphenolase Activities of Tyrosinase. IUBMB Life, 2002, 54, 137-141.	1.5	15
27	Spectrophotometric Characterization of the Action of Tyrosinase on <i>p</i> -Coumaric and Caffeic Acids: Characteristics of <i>o</i> -Caffeoquinone. Journal of Agricultural and Food Chemistry, 2017, 65, 3378-3386.	2.4	15
28	Considerations about the kinetic mechanism of tyrosinase in its action on monophenols: A review. Molecular Catalysis, 2022, 518, 112072.	1.0	14
29	Interpretation of the reactivity of peroxidase compound II with phenols and anilines using the Marcus equation. Biological Chemistry, 2005, 386, 351-60.	1.2	13
30	Catalytic oxidation of o-aminophenols and aromatic amines by mushroom tyrosinase. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2011, 1814, 1974-1983.	1.1	13
31	Kinetic study of monophenol and o-diphenol binding to oxytyrosinase. Journal of Molecular Catalysis B: Enzymatic, 2005, 32, 185-192.	1.8	12
32	Opposite effects of peroxidase in the initial stages of tyrosinase-catalysed melanin biosynthesis. International Journal of Biochemistry and Cell Biology, 2005, 37, 1179-1196.	1.2	12
33	Study of Umbelliferone Hydroxylation to Esculetin Catalyzed by Polyphenol Oxidase. Biological and Pharmaceutical Bulletin, 2013, 36, 1140-1145.	0.6	12
34	Kinetic characterization of the oxidation of catecolamines and related compounds by laccase. International Journal of Biological Macromolecules, 2020, 164, 1256-1266.	3.6	12
35	Melanogenesis Inhibition Due to NADH. Bioscience, Biotechnology and Biochemistry, 2010, 74, 1777-1787.	0.6	11
36	Kinetic characterisation of o-aminophenols and aromatic o-diamines as suicide substrates of tyrosinase. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2012, 1824, 647-655.	1.1	10

#	Article	IF	CITATIONS
37	Catalysis and inactivation of tyrosinase in its action on o-diphenols, o-aminophenols and o-phenylendiamines: Potential use in industrial applications. Journal of Molecular Catalysis B: Enzymatic, 2013, 91, 17-24.	1.8	10
38	Kinetic characterization of phenol and aniline derivates as substrates of peroxidase. Biological Chemistry, 2004, 385, 795-800.	1.2	9
39	Stereospecificity of horseradish peroxidase. Biological Chemistry, 2004, 385, 1177-84.	1.2	9
40	Tetrahydrofolic Acid Is a Potent Suicide Substrate of Mushroom Tyrosinase. Journal of Agricultural and Food Chemistry, 2011, 59, 1383-1391.	2.4	8
41	Melanogenesis inhibition by tetrahydropterines. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2009, 1794, 1766-1774.	1.1	7
42	Indirect inactivation of tyrosinase in its action on 4- <i>tert</i> -butylphenol. Journal of Enzyme Inhibition and Medicinal Chemistry, 2014, 29, 344-352.	2.5	6
43	Study of tyrosine and dopa enantiomers as tyrosinase substrates initiating <scp>l</scp> ― and <scp>d</scp> â€melanogenesis pathways. Biotechnology and Applied Biochemistry, 2021, 68, 823-831.	1.4	6
44	Implication of Hepsin from Primary Tumor in the Prognosis of Colorectal Cancer Patients. Cancers, 2022, 14, 3106.	1.7	6
45	The Relationship between the IC50 Values and the Apparent Inhibition Constant in the Study of Inhibitors of Tyrosinase Diphenolase Activity Helps Confirm the Mechanism of Inhibition. Molecules, 2022, 27, 3141.	1.7	5
46	Some kinetic properties of deoxytyrosinase. Journal of Molecular Catalysis B: Enzymatic, 2010, 62, 173-182.	1.8	4
47	Suicide inactivation of tyrosinase in its action on tetrahydropterines. Journal of Enzyme Inhibition and Medicinal Chemistry, 2011, 26, 728-733.	2.5	4
48	Competitive and uncompetitive inhibitors simultaneously acting on an autocatalytic zymogen activation reaction. Journal of Enzyme Inhibition and Medicinal Chemistry, 2006, 21, 635-645.	2.5	3
49	Kinetic Characterization of the Oxidation of Carbidopa and Benserazide by Tyrosinase and Peroxidase. Bioscience, Biotechnology and Biochemistry, 2009, 73, 1308-1313.	0.6	3
50	New features of the steady-state rate related with the initial concentration of substrate in the diphenolase and monophenolase activities of tyrosinase. Journal of Mathematical Chemistry, 2010, 48, 347-362.	0.7	3
51	Enzymatic oxidation of oleuropein and 3â€hydroxytyrosol by laccase, peroxidase, and tyrosinase. Journal of Food Biochemistry, 2021, 45, e13803.	1.2	3
52	Indirect inactivation of tyrosinase in its action on tyrosine. Acta Biochimica Polonica, 2011, 58, 477-88.	0.3	3
53	Effects of Tetrahydropterines on the Generation of Quinones Catalyzed by Tyrosinase. Bioscience, Biotechnology and Biochemistry, 2010, 74, 1108-1109.	0.6	1
54	Deuterium isotope effect on the suicide inactivation of tyrosinase in its action on <i>oâ€</i> diphenols. IUBMB Life, 2013, 65, 793-799.	1.5	1

#	Article	IF	CITATIONS
55	Kinetic analysis of a general model of activation of aspartic proteinase zymogens involving a reversible inhibitor. I. Kinetic analysis. Journal of Enzyme Inhibition and Medicinal Chemistry, 2007, 22, 147-155.	2.5	0
56	Determination and Applications of the Molar Absorptivity of Phenolic Adducts with Captopril and Mesna. Journal of Agricultural and Food Chemistry, 2009, 57, 1143-1150.	2.4	0
57	Selection of most powerful depigmenting agents: Considerations about their possible use. Dermatologic Therapy, 2021, 34, e14774.	0.8	o