Thomas R Sinclair

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9327274/publications.pdf Version: 2024-02-01

255 papers	14,803 citations	16437 64 h-index	23514 111 g-index
257	257	257	8645
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Leaf Nitrogen, Photosynthesis, and Crop Radiation Use Efficiency: A Review. Crop Science, 1989, 29, 90-98.	0.8	939
2	Radiation Use Efficiency. Advances in Agronomy, 1999, 65, 215-265.	2.4	634
3	Photosynthate and Nitrogen Requirements for Seed Production by Various Crops. Science, 1975, 189, 565-567.	6.0	563
4	Water-Use Efficiency in Crop Production. BioScience, 1984, 34, 36-40.	2.2	457
5	Temperature and Solar Radiation Effects on Potential Maize Yield across Locations. Agronomy Journal, 1990, 82, 338-343.	0.9	313
6	Crop transformation and the challenge to increase yield potential. Trends in Plant Science, 2004, 9, 70-75.	4.3	304
7	Historical Changes in Harvest Index and Crop Nitrogen Accumulation. Crop Science, 1998, 38, 638-643.	0.8	301
8	Symbiotic N2 fixation response to drought. Journal of Experimental Botany, 1999, 50, 143-155.	2.4	299
9	Analysis of the Carbon and Nitrogen Limitations to Soybean Yield ¹ . Agronomy Journal, 1976, 68, 319-324.	0.9	288
10	Transpiration responses to vapor pressure deficit in well watered â€~slow-wilting' and commercial soybean. Environmental and Experimental Botany, 2007, 61, 145-151.	2.0	278
11	Nitrogen and water resources commonly limit crop yield increases, not necessarily plant genetics. Global Food Security, 2012, 1, 94-98.	4.0	252
12	Crop Modeling: From Infancy to Maturity. Agronomy Journal, 1996, 88, 698-704.	0.9	246
13	Assessment across the United States of the Benefits of Altered Soybean Drought Traits. Agronomy Journal, 2010, 102, 475-482.	0.9	227
14	Potential yield and water-use efficiency benefits in sorghum from limited maximum transpiration rate. Functional Plant Biology, 2005, 32, 945.	1.1	226
15	System Analysis of Plant Traits to Increase Grain Yield on Limited Water Supplies. Agronomy Journal, 2001, 93, 263-270.	0.9	212
16	Challenges in breeding for yield increase for drought. Trends in Plant Science, 2011, 16, 289-293.	4.3	195
17	Low leaf hydraulic conductance associated with drought tolerance in soybean. Physiologia Plantarum, 2008, 132, 446-451.	2.6	186
18	The effect of pot size on growth and transpiration of maize and soybean during water deficit stress. Journal of Experimental Botany, 1998, 49, 1381-1386.	2.4	177

#	Article	IF	CITATIONS
19	Erect Leaves and Photosynthesis in Rice. Science, 1999, 283, 1455c-1455.	6.0	177
20	Physiological phenotyping of plants for crop improvement. Trends in Plant Science, 2015, 20, 139-144.	4.3	171
21	Ecological and evolutionary consequences of desiccation tolerance in tropical fern gametophytes. New Phytologist, 2007, 176, 708-717.	3.5	159
22	Limitedâ€Transpiration Trait May Increase Maize Drought Tolerance in the US Corn Belt. Agronomy Journal, 2015, 107, 1978-1986.	0.9	158
23	Drought tolerance and yield increase of soybean resulting from improved symbiotic N2 fixation. Field Crops Research, 2007, 101, 68-71.	2.3	148
24	Variation in Crop Radiationâ€Use Efficiency with Increased Diffuse Radiation. Crop Science, 1992, 32, 1281-1284.	0.8	144
25	Genetic variability of transpiration response to vapor pressure deficit among sorghum genotypes. Field Crops Research, 2010, 119, 85-90.	2.3	144
26	Criteria for publishing papers on crop modeling. Field Crops Research, 2000, 68, 165-172.	2.3	135
27	Legume nitrogen fixation and drought. Nature, 1995, 378, 344-344.	13.7	133
28	Stomatal Closure of Maize Hybrids in Response to Drying Soil. Crop Science, 1997, 37, 803-807.	0.8	133
29	Water Deficit Effects on Maize Yields Modeled under Current and "Greenhouse―Climates. Agronomy Journal, 1991, 83, 1052-1059.	0.9	127
30	Temperature effect on transpiration response of maize plants to vapour pressure deficit. Environmental and Experimental Botany, 2012, 78, 157-162.	2.0	125
31	Response to Drought Stress of Nitrogen Fixation (Acetylene Reduction) Rates by Field-Grown Soybeans. Plant Physiology, 1985, 78, 525-530.	2.3	119
32	ls transpiration efficiency a viable plant trait in breeding for crop improvement?. Functional Plant Biology, 2012, 39, 359.	1.1	111
33	Physiological traits for crop yield improvement in low N and P environments. Plant and Soil, 2002, 245, 1-15.	1.8	108
34	Limited-transpiration response to high vapor pressure deficit in crop species. Plant Science, 2017, 260, 109-118.	1.7	108
35	Genotypic Variation in Peanut for Transpiration Response to Vapor Pressure Deficit. Crop Science, 2010, 50, 191-196.	0.8	105
36	Soybean genotypic differences in sensitivity of symbiotic nitrogen fixation to soil dehydration. Plant and Soil, 1991, 133, 31-37.	1.8	101

#	Article	IF	CITATIONS
37	Transpiration response of †slow-wilting' and commercial soybean (Glycine max (L.) Merr.) genotypes to three aquaporin inhibitors. Journal of Experimental Botany, 2010, 61, 821-829.	2.4	101
38	Soybean production potential in Africa. Global Food Security, 2014, 3, 31-40.	4.0	100
39	Field Pea Transpiration and Leaf Growth in Response to Soil Water Deficits. Crop Science, 1996, 36, 331-335.	0.8	95
40	Epidermal conductance, stomatal density and stomatal size among genotypes of Sorghum bicolor (L.) Moench. Plant, Cell and Environment, 1989, 12, 425-431.	2.8	94
41	Relative Sensitivity of Nitrogen and Biomass Accumulation to Drought in Fieldâ€Grown Soybean 1. Agronomy Journal, 1987, 79, 986-991.	0.9	93
42	Asparagine and ureide accumulation in nodules and shoots as feedback inhibitors of N2 fixation in soybean. Physiologia Plantarum, 2000, 110, 215-223.	2.6	93
43	The effect of vapor pressure deficit on maize transpiration response to a drying soil. Plant and Soil, 2002, 239, 113-121.	1.8	93
44	Transpiration Response of Maize Hybrids to Atmospheric Vapour Pressure Deficit. Journal of Agronomy and Crop Science, 2013, 199, 155-160.	1.7	92
45	Accumulation of γ-aminobutyric acid in nodulated soybean in response to drought stress. Physiologia Plantarum, 1998, 102, 79-86.	2.6	88
46	An analysis of errors in the calculation of energy flux densities above vegetation by a Bowen-ratio profile method. Boundary-Layer Meteorology, 1975, 8, 129-139.	1.2	85
47	Relative Sensitivity of Grain Yield and Biomass Accumulation to Drought in Fieldâ€Grown Maize. Crop Science, 1990, 30, 690-693.	0.8	85
48	Soybean N ₂ Fixation Estimates, Ureide Concentration, and Yield Responses to Drought. Crop Science, 2004, 44, 484-492.	0.8	84
49	Increasing Photosynthesis: Unlikely Solution ForÂWorld Food Problem. Trends in Plant Science, 2019, 24, 1032-1039.	4.3	84
50	Theoretical Analysis of Soil and Plant Traits Influencing Daily Plant Water Flux on Drying Soils. Agronomy Journal, 2005, 97, 1148-1152.	0.9	83
51	The future of grain legumes in cropping systems. Crop and Pasture Science, 2012, 63, 501.	0.7	83
52	Effect of Nitrogen Supply on Maize Yield: I. Modeling Physiological Responses. Agronomy Journal, 1995, 87, 632-641.	0.9	80
53	Distribution of Nitrogen among Leaves in Soybean Canopies. Crop Science, 1993, 33, 804-808.	0.8	79
54	Processes Contributing to N ₂ â€Fixation Intensitivity to Drought in the Soybean Cultivar Jackson. Crop Science, 1996, 36, 961-968.	0.8	79

#	Article	IF	CITATIONS
55	Genetic Variability of Transpiration Response to Vapor Pressure Deficit among Soybean Cultivars. Crop Science, 2009, 49, 955-960.	0.8	77
56	ls a physiological perspective relevant in a â€~genocentric' age?*. Journal of Experimental Botany, 2005, 56, 2777-2782.	2.4	76
57	Leaf Area Development in Fieldâ€Grown Soybeans 1. Agronomy Journal, 1984, 76, 141-146.	0.9	75
58	Inadequacy of the Liebig Limitingâ€Factor Paradigm for Explaining Varying Crop Yields. Agronomy Journal, 1993, 85, 742-746.	0.9	73
59	Soybean nodulation and N2fixation response to drought under carbon dioxide enrichment. Plant, Cell and Environment, 1998, 21, 491-500.	2.8	73
60	Stability of Soybean Harvest Index ¹ . Agronomy Journal, 1984, 76, 482-486.	0.9	72
61	Soybean Radiationâ€Use Efficiency as Influenced by Nonuniform Specific Leaf Nitrogen Distribution and Diffuse Radiation. Crop Science, 1993, 33, 808-812.	0.8	70
62	Identification of Soybean Genotypes with N ₂ Fixation Tolerance to Water Deficits. Crop Science, 2000, 40, 1803-1809.	0.8	70
63	Soybean Flowering Date: Linear and Logistic Models Based on Temperature and Photoperiod. Crop Science, 1991, 31, 786-790.	0.8	68
64	Aquaporin Activity to Improve Crop Drought Tolerance. Cells, 2018, 7, 123.	1.8	68
65	Leaf ureide degradation and N2 fixation tolerance to water deficit in soybean1. Journal of Experimental Botany, 2001, 52, 153-159.	2.4	67
66	Allometric approach to crop nutrition and implications for crop diagnosis and phenotyping. A review. Agronomy for Sustainable Development, 2019, 39, 1.	2.2	67
67	Feedback regulation of symbiotic N2 fixation under drought stress. Agronomy for Sustainable Development, 2001, 21, 621-626.	0.8	67
68	Evaluation of Elite Southern Maturity Soybean Breeding Lines for Droughtâ€Tolerant Traits. Agronomy Journal, 2014, 106, 1947-1954.	0.9	63
69	Mapping of quantitative trait loci for canopy-wilting trait in soybean (Glycine max L. Merr). Theoretical and Applied Genetics, 2012, 125, 837-846.	1.8	61
70	Leaf Elongation and Turgor Pressure in Fieldâ€grown Soybean ¹ . Agronomy Journal, 1978, 70, 761-764.	0.9	59
71	A Peanut Simulation Model: I. Model Development and Testing. Agronomy Journal, 1995, 87, 1085-1093.	0.9	59
72	Daily transpiration rates of woody species on drying soil. Tree Physiology, 2005, 25, 1469-1472.	1.4	59

#	Article	IF	CITATIONS
73	Water Relations of Fieldâ€Grown Soybean under Drought ¹ . Crop Science, 1986, 26, 993-998.	0.8	57
74	Light effects on rhizome morphogenesis in nutsedges (<i>Cyperus</i> spp.): implications for control by soil solarization. Weed Science, 1998, 46, 575-580.	0.8	57
75	Linear Increase in Soybean Harvest Index during Seedâ€Filling ¹ . Agronomy Journal, 1985, 77, 207-211.	0.9	54
76	A simple model for chickpea development, growth and yield. Field Crops Research, 2011, 124, 252-260.	2.3	52
77	Comparison of common bean (Phaseolus vulgaris L.) genotypes for nitrogen fixation tolerance to soil drying. Plant and Soil, 2013, 364, 29-37.	1.8	52
78	Variation among Soybean Cultivars in Dinitrogen Fixation Response to Drought. Agronomy Journal, 1997, 89, 963-969.	0.9	51
79	Registration of Soybean Germplasm Lines R01â€416F and R01â€581F for Improved Yield and Nitrogen Fixation under Drought Stress. Journal of Plant Registrations, 2007, 1, 166-167.	0.4	50
80	Effective Water Use Required for Improving Crop Growth Rather Than Transpiration Efficiency. Frontiers in Plant Science, 2018, 9, 1442.	1.7	49
81	The importance of slow canopy wilting in drought tolerance in soybean. Journal of Experimental Botany, 2020, 71, 642-652.	2.4	49
82	Soybean leaf growth and gas exchange response to drought under carbon dioxide enrichment. Global Change Biology, 1999, 5, 283-291.	4.2	48
83	Genetic Variability of Transpiration Response of Soybean [<i>Glycine max</i> (L.) Merr.] Shoots to Leaf Hydraulic Conductance Inhibitor AgNO ₃ . Crop Science, 2010, 50, 1423-1430.	0.8	48
84	Extractable Soil Water and Transpiration Rate of Soybean on Sandy Soils. Agronomy Journal, 1998, 90, 363-368.	0.9	47
85	Hydraulic Conductance of Maize Hybrids Differing in Transpiration Response to Vapor Pressure Deficit. Crop Science, 2014, 54, 1147-1152.	0.8	47
86	Genotypic variation within sorghum for transpiration response to drying soil. Plant and Soil, 2012, 357, 35-40.	1.8	46
87	Ureide concentration of fieldâ€grown soybean in response to drought and the relationship to nitrogen fixation. Journal of Plant Nutrition, 1998, 21, 949-966.	0.9	44
88	Growth and Yield of Field-Grown Soybean in Response to Enhanced Exposure to Ultraviolet-B Radiation. Journal of Environmental Quality, 1990, 19, 478-481.	1.0	44
89	Genetic variability of transpiration response to vapor pressure deficit among soybean (Glycine max [L.]) Tj ETQq1 156-160.	1 0.78431 2.3	l4 rgBT /Ove 43
90	Temperature interactions with transpiration response to vapor pressure deficit among cultivated and wild soybean genotypes. Physiologia Plantarum, 2013, 148, 62-73.	2.6	43

#	Article	IF	CITATIONS
91	Nitrogen accumulation and nodule activity of field-grown †Jackson' soybean in response to water deficits. Field Crops Research, 1997, 52, 109-116.	2.3	42
92	Transpiration Sensitivity to Evaporative Demand Across 120ÂYears of Breeding of Australian Wheat Cultivars. Journal of Agronomy and Crop Science, 2017, 203, 219-226.	1.7	42
93	A comparison of four wheat models with respect to robustness and transparency: Simulation in a temperate, sub-humid environment. Field Crops Research, 2015, 175, 37-46.	2.3	41
94	Maize Hybrid Variability for Transpiration Decrease with Progressive Soil Drying. Journal of Agronomy and Crop Science, 2013, 199, 23-29.	1.7	40
95	Fixation Drought Tolerance of the Slowâ€Wilting Soybean PI 471938. Crop Science, 2013, 53, 2072-2078.	0.8	40
96	Genotypic variability among peanut (Arachis hypogea L.) in sensitivity of nitrogen fixation to soil drying. Plant and Soil, 2010, 330, 139-148.	1.8	38
97	Transpiration response of de-rooted peanut plants to aquaporin inhibitors. Environmental and Experimental Botany, 2012, 78, 167-172.	2.0	38
98	Variation Among Maize Hybrids in Response to High Vapor Pressure Deficit at High Temperatures. Crop Science, 2016, 56, 392-396.	0.8	38
99	Nitrogen Partitioning and Dry Matter Allocation in Soybeans with Different Seed Protein Concentration 1. Crop Science, 1985, 25, 451-455.	0.8	37
100	Crop rotations in Argentina: Analysis of water balance and yield using crop models. Agricultural Systems, 2009, 102, 11-16.	3.2	37
101	Basis of Slowâ€Wilting Phenotype in Soybean PI 471938. Crop Science, 2012, 52, 1261-1269.	0.8	37
102	Model analysis of plant traits leading to prolonged crop survival during severe drought. Field Crops Research, 2000, 68, 211-217.	2.3	36
103	Identification of QTLs associated with limited leaf hydraulic conductance in soybean. Euphytica, 2012, 186, 679-686.	0.6	35
104	Hydraulic conductance differences among sorghum genotypes to explain variation in restricted transpiration rates. Functional Plant Biology, 2014, 41, 270.	1.1	35
105	Wheat drought-tolerance to enhance food security in Tunisia, birthplace of the Arab Spring. European Journal of Agronomy, 2019, 107, 1-9.	1.9	35
106	Genotypic Variation in Soybean Nodule Number and Weight. Crop Science, 1991, 31, 301-304.	0.8	34
107	Manganese application alleviates the water deficitâ€induced decline of N2fixation. Plant, Cell and Environment, 2000, 23, 497-505.	2.8	34
108	Divergence in Droughtâ€resistance Traits among Parents of Recombinant Peanut Inbred Lines. Crop Science, 2013, 53, 2569-2576.	0.8	34

#	Article	IF	CITATIONS
109	Leaf expansion of soybean subjected to high and low atmospheric vapour pressure deficits. Journal of Experimental Botany, 2015, 66, 1845-1850.	2.4	34
110	Changes in Yield and Seed Growth Traits in Soybean Cultivars Released in the Southern USA from 1945 to 1983. Crop Science, 1993, 33, 1204-1209.	0.8	33
111	Short photoperiod inhibits winter growth of subtropical grasses. Planta, 2001, 213, 488-491.	1.6	33
112	Temperature influences the ability of tall fescue to control transpiration in response to atmospheric vapour pressure deficit. Functional Plant Biology, 2012, 39, 979.	1.1	33
113	Leaf ureide degradation and N(2) fixation tolerance to water deficit in soybean. Journal of Experimental Botany, 2001, 52, 153-9.	2.4	33
114	Nodule gas exchange and water potential response to rapid imposition of water deficit. Plant, Cell and Environment, 1995, 18, 179-187.	2.8	32
115	Diurnal and Seasonal Variation in Dinitrogen Fixation (Acetylene Reduction) Rates by Field–Grown Soybeans ¹ . Agronomy Journal, 1985, 77, 679-684.	0.9	31
116	Is the Stayâ€Green Trait in Sorghum a Result of Transpiration Sensitivity to Either Soil Drying or Vapor Pressure Deficit?. Crop Science, 2013, 53, 2129-2134.	0.8	31
117	Analysis of Seed Growth by Linear Increase in Harvest Index. Crop Science, 1999, 39, 486-493.	0.8	30
118	Changes in Water Potential During Pressure Bomb Measurement 1. Agronomy Journal, 1978, 70, 353-355.	0.9	29
119	The Role of Osmotic Potential in Spring Sap Flow of Mature Sugar Maple Trees (Acer saccharum) Tj ETQq1 1 0.78	34314 rgB 2.4	T /Overlock 1
120	An osmotic hypothesis for the regulation of oxygen permeability in soybean nodules. Plant, Cell and Environment, 1994, 17, 837-843.	2.8	29
121	Simulation analysis of relative yield advantage of barley and wheat in an eastern Mediterranean climate. Field Crops Research, 2005, 91, 287-296.	2.3	29
122	A Reminder of the Limitations in Using Beer's Law to Estimate Daily Radiation Interception by Vegetation. Crop Science, 2006, 46, 2343-2347.	0.8	29
123	Relevance of limited-transpiration trait for lentil (Lens culinaris Medik.) in South Asia. Field Crops Research, 2017, 209, 96-107.	2.3	29
124	Soybean nodule gas permeability, nitrogen fixation and dirunal cycles in soil temperature. Plant and Soil, 1988, 109, 227-234.	1.8	28
125	Crop Physiology: Significant Discoveries and Our Changing Perspective on Research. Crop Science, 2006, 46, 2270-2277.	0.8	28
126	Production potential of Lentil (Lens culinaris Medik.) in East Africa. Agricultural Systems, 2015, 137, 24-38.	3.2	28

#	Article	IF	CITATIONS
127	Assumptions of Plastochron Index: Evaluation With Soya Bean Under Field Drought Conditions. Annals of Botany, 1982, 50, 673-680.	1.4	27
128	Transpiration response of Arabidopsis, maize, and soybean to drying of artificial and mineral soil. Environmental and Experimental Botany, 2007, 59, 188-192.	2.0	27
129	Selection of host-plant genotype: the next step to increase grain legume N2 fixation activity. Journal of Experimental Botany, 2018, 69, 3523-3530.	2.4	27
130	Plant Traits to Increase Winter Wheat Yield in Semiarid and Subhumid Environments. Agronomy Journal, 2019, 111, 1728-1740.	0.9	27
131	Leaf CER from Postâ€Flowering to Senescence of Fieldâ€grown Soybean Cultivars 1. Crop Science, 1980, 20, 196-200.	0.8	26
132	Hydraulic conductance of intact plants of two contrasting sorghum lines, SC15 and SC1205. Functional Plant Biology, 2013, 40, 730.	1.1	26
133	Seasonal Changes in Morphology and Anatomy of Fieldâ€grown Soybean Leaves 1. Crop Science, 1980, 20, 191-196.	0.8	25
134	Differential sensitivity of C3 and C4 turfgrass species to increasing atmospheric vapor pressure deficit. Environmental and Experimental Botany, 2009, 67, 372-376.	2.0	25
135	Peanut Nitrogen Fixation (C2H2 Reduction) Response to Soil Dehydration. Peanut Science, 1995, 22, 162-166.	0.2	23
136	Measurement of Limitedâ€Transpiration Trait under High Vapor Pressure Deficit for Peanut in Chambers and in Field. Agronomy Journal, 2015, 107, 1019-1024.	0.9	23
137	Soybean Seed Growth II. Individual Seed Mass and Component Compensation 1. Agronomy Journal, 1984, 76, 128-133.	0.9	22
138	Physiological properties of a drought-resistant wild soybean genotype: Transpiration control with soil drying and expression of root morphology. Plant and Soil, 2014, 374, 359-370.	1.8	22
139	Mapping Water Stress Incidence and Intensity, Optimal Plant Populations, and Cultivar Duration for African Groundnut Productivity Enhancement. Frontiers in Plant Science, 2017, 8, 432.	1.7	22
140	Cessation of Leaf Emergence in Indeterminate Soybeans. Crop Science, 1984, 24, 483-486.	0.8	21
141	Model of Leaf Area Expansion in Field Pea Subjected to Soil Water Deficits. Agronomy Journal, 1996, 88, 467-472.	0.9	21
142	Resources for Crop Production: Accessing the Unavailable. Trends in Plant Science, 2019, 24, 121-129.	4.3	21
143	Variation among Cowpea Genotypes in Sensitivity of Transpiration Rate and Symbiotic Nitrogen Fixation to Soil Drying. Crop Science, 2015, 55, 2270-2275.	0.8	20
144	Ureide Accumulation in Response to Mn Nutrition by Eight Soybean Genotypes with N Fixation Tolerance to Soil Drying. Crop Science, 2003, 43, 592.	0.8	20

#	Article	IF	CITATIONS
145	Gas Exchange of Fieldâ€Grown Soybean under Drought 1. Agronomy Journal, 1986, 78, 454-458.	0.9	19
146	Water Relations of Turgor Recovery and Restiffening of Wilted Cabbage Leaves in the Absence of Water Uptake. Plant Physiology, 1989, 91, 433-439.	2.3	19
147	Model Analysis of Sorghum Response to Nitrogen in Subtropical and Tropical Environments. Agronomy Journal, 1997, 89, 201-207.	0.9	19
148	Atmospheric vapor pressure deficit is critical in predicting growth response of "cool-season―grass Festuca arundinacea to temperature change. Planta, 2007, 227, 273-276.	1.6	19
149	Persistence of limited-transpiration-rate trait in sorghum at high temperature. Environmental and Experimental Botany, 2015, 115, 58-62.	2.0	19
150	Silver and zinc inhibitors influence transpiration rate and aquaporin transcript abundance in intact soybean plants. Environmental and Experimental Botany, 2016, 122, 168-175.	2.0	19
151	Pot binding as a variable confounding plant phenotype: theoretical derivation and experimental observations. Planta, 2017, 245, 729-735.	1.6	19
152	Geospatial assessment for crop physiological and management improvements with examples using the simulation model. Crop Science, 2020, 60, 700-708.	0.8	19
153	A Survey of Soybean Cultivars for Variability in Specific Leaf Weight 1. Crop Science, 1979, 19, 887-892.	0.8	18
154	Variability Among Plants in Dinitrogen Fixation (Acetylene Reduction) Rates by Fieldâ€Grown Soybean 1. Agronomy Journal, 1985, 77, 947-950.	0.9	18
155	Effect of Nitrogen Supply on Maize Yield: II. Field and Model Analysis. Agronomy Journal, 1995, 87, 642-648.	0.9	18
156	Influence of Plant Phosphorus and Iron Concentrations on Growth of Soybean. Journal of Plant Nutrition, 2009, 32, 1513-1526.	0.9	18
157	Transpiration and visual appearance of warm season turfgrasses during soil drying. Environmental and Experimental Botany, 2013, 89, 36-43.	2.0	18
158	Comparisons of the Effects of Elevated Vapor Pressure Deficit on Gene Expression in Leaves among Two Fast-Wilting and a Slow-Wilting Soybean. PLoS ONE, 2015, 10, e0139134.	1.1	18
159	Leaf aquaporin transcript abundance in peanut genotypes diverging in expression of the limitedâ€ŧranspiration trait when subjected to differing vapor pressure deficits and aquaporin inhibitors. Physiologia Plantarum, 2016, 156, 387-396.	2.6	18
160	Yield comparison of simulated rainfed wheat and barley across Middle-East. Agricultural Systems, 2017, 153, 101-108.	3.2	18
161	Extraction of Apoplastic Water during Pressureâ€Volume Dehydrations 1. Agronomy Journal, 1985, 77, 798-802.	0.9	17
162	Lentil Variation in Phenology and Yield Evaluated with a Model. Agronomy Journal, 2015, 107, 1967-1977.	0.9	17

#	Article	IF	CITATIONS
163	Identification of Virginiaâ€Type Peanut Genotypes for Waterâ€Deficit Conditions Based on Early Decrease in Transpiration Rate with Soil Drying. Crop Science, 2018, 58, 2607-2612.	0.8	17
164	Leaf Nitrogen Content, Photosynthesis and Radiation Use Efficiency in Peanut1. Peanut Science, 1993, 20, 40-43.	0.2	16
165	Diversity in Drought Traits among Commercial Southeastern US Peanut Cultivars. International Journal of Agronomy, 2011, 2011, 1-7.	0.5	16
166	Sleep tight and wake-up early: nocturnal transpiration traits to increase wheat drought tolerance in a Mediterranean environment. Functional Plant Biology, 2020, 47, 1117.	1.1	16
167	Sensitivity of N ₂ Fixation Traits in Soybean Cultivar Jackson to Manganese. Crop Science, 2002, 42, 791-796.	0.8	15
168	Genetic variation in peanut leaf maintenance and transpiration recovery from severe soil drying. Field Crops Research, 2014, 158, 65-72.	2.3	15
169	Green revolution still too green. Nature, 1999, 398, 556-556.	13.7	14
170	Penman's sink-strength model as an improved approach to estimating plant canopy transpiration. Agricultural and Forest Meteorology, 2014, 197, 136-141.	1.9	14
171	Inhibitor screen for limited-transpiration trait among maize hybrids. Environmental and Experimental Botany, 2015, 109, 161-167.	2.0	14
172	Sowing Density Effect on Common Bean Leaf Area Development. Crop Science, 2016, 56, 2713-2721.	0.8	14
173	Tolerance of Three Warm-season Turfgrasses to Increasing and Prolonged Soil Water Deficit. Hortscience: A Publication of the American Society for Hortcultural Science, 2011, 46, 1550-1555.	0.5	14
174	Estimation of Soil Evaporation During Fallow Seasons to Assess Water Balances for Noâ€Tillage Crop Rotations. Journal of Agronomy and Crop Science, 2013, 199, 57-65.	1.7	13
175	Growth and Evapotranspiration Response of Two Turfgrass Species to Nitrogen and Trinexapac-ethyl. Hortscience: A Publication of the American Society for Hortcultural Science, 2009, 44, 2053-2057.	0.5	13
176	Nitrogen fixation tolerance to soil water deficit among commercial cultivars and breeding lines of peanut. Field Crops Research, 2013, 149, 127-132.	2.3	12
177	Expression of the limitedâ€ŧranspiration trait under high vapour pressure deficit in peanut populations: Runner and virginia types. Journal of Agronomy and Crop Science, 2017, 203, 295-300.	1.7	12
178	Expression of Drought‶olerant N ₂ Fixation in Heterogeneous Inbred Families derived from PI471938 and Hutcheson Soybean. Crop Science, 2018, 58, 364-369.	0.8	12
179	Seasonal and climatic variation of weighted VPD for transpiration estimation. European Journal of Agronomy, 2020, 113, 125966.	1.9	12
180	Opportunities to improve the seasonal dynamics of water use in lentil (Lens culinaris Medik.) to enhance yield increase in water-limited environments. Chemical and Biological Technologies in Agriculture, 2017, 4, .	1.9	11

#	Article	IF	CITATIONS
181	Basis of limited-transpiration rate under elevated vapor pressure deficit and high temperature among sweet corn cultivars. Environmental and Experimental Botany, 2020, 179, 104205.	2.0	11
182	Plantâ€based predictions of canopy transpiration instead of meteorological approximations. Crop Science, 2020, 60, 1133-1141.	0.8	11
183	Leaf wall yield threshold of field-grown soybean measured by vapour pressure psychrometry. Plant, Cell and Environment, 1989, 12, 441-447.	2.8	10
184	Transpiration inhibition by stored xylem sap from well-watered maize plants. Plant, Cell and Environment, 1995, 18, 1441-1445.	2.8	10
185	Variation in Manganese and Iron Accumulation Among Soybean Genotypes Growing on Hydroponic Solutions of Differing Manganese and Nitrate Concentrations. Journal of Plant Nutrition, 2005, 28, 521-535.	0.9	10
186	Assessing water-related plant traits to explain slow-wilting in soybean PI 471938. Journal of Crop Improvement, 2017, 31, 400-417.	0.9	10
187	Unraveling the genetic architecture for carbon and nitrogen related traits and leaf hydraulic conductance in soybean using genome-wide association analyses. BMC Genomics, 2019, 20, 811.	1.2	10
188	Threeâ€dimensional reconstruction of soybean nodules provides an update on vascular structure. American Journal of Botany, 2019, 106, 507-513.	0.8	10
189	Assessing drought tolerance of traditional maize genotypes of Mozambique using chlorophyll fluorescence parameters. South African Journal of Botany, 2021, 138, 311-317.	1.2	10
190	Limited-Transpiration Trait for Increased Yield for Water-Limited Soybean: From Model to Phenotype to Cultivars. , 2016, , 129-146.		10
191	Sensitivity of N Fixation Traits in Soybean Cultivar Jackson to Manganese. Crop Science, 2002, 42, 791.	0.8	10
192	Simulation Analysis of Variation among Seasons in Winter Wheat Yields in Northern Italy. Journal of Agronomy and Crop Science, 1993, 170, 202-207.	1.7	9
193	Precipitation: The Thousand-Pound Gorilla in Crop Response to Climate Change. ICP Series on Climate Change Impacts, Adaptation, and Mitigation, 2010, , 179-190.	0.4	9
194	ZINC TREATMENT RESULTS IN TRANSPIRATION RATE DECREASES THAT VARY AMONG SOYBEAN GENOTYPES. Journal of Plant Nutrition, 2012, 35, 1866-1877.	0.9	9
195	Limited transpiration under high vapor pressure deficits of creeping bentgrass by application of Daconil-Action®. Planta, 2016, 243, 421-427.	1.6	9
196	Assessing transpiration estimates in tall fescue: The relationship among transpiration, growth, and vapor pressure deficits. Environmental and Experimental Botany, 2017, 137, 119-127.	2.0	9
197	Leaf Expansion and Transpiration Response to Soil Drying and Recovery among Cowpea Genotypes. Crop Science, 2017, 57, 2109-2116.	0.8	9
198	Sowing date and mulch to improve water use and yield of wheat and barley in the Middle East environment. Agricultural Systems, 2018, 165, 26-32.	3.2	9

#	Article	IF	CITATIONS
199	Temperature effect on peanut (Arachis hypogaea L.) transpiration response to vapor pressure deficit and its recovery. Journal of Crop Improvement, 2019, 33, 177-186.	0.9	9
200	Inheritance of limited-transpiration trait in peanut: an update. Journal of Crop Improvement, 2018, 32, 281-286.	0.9	8
201	Soybean nitrogen fixation and growth as affected by drought stress and potassium fertilization. Journal of Plant Nutrition, 1994, 17, 1193-1203.	0.9	7
202	Transpiration and Nitrogen Fixation Recovery Capacity in Soybean Following Drought Stress. Journal of Crop Improvement, 2016, 30, 562-571.	0.9	7
203	ls nitrogen accumulation in grain legumes responsive to growth or ontogeny?. Physiologia Plantarum, 2018, 162, 109-122.	2.6	7
204	Partitioning between evaporation and transpiration from Agrostis stolonifera L. during light and dark periods. Agricultural and Forest Meteorology, 2018, 260-261, 73-79.	1.9	7
205	Temporal water use by two maize lines differing in leaf osmotic potential. Crop Science, 2020, 60, 945-953.	0.8	7
206	Limitedâ€ŧranspiration rate and plant conductance in a diverse sweet corn population. Crop Science, 2022, 62, 374-381.	0.8	7
207	Relative growth rates of leaves from soybean grown under drought-stressed and irrigated field conditions. Plant, Cell and Environment, 1989, 12, 317-321.	2.8	6
208	Xylem vessel radii comparison between soybean genotypes differing in tolerance to drought. Journal of Crop Improvement, 2020, 34, 404-413.	0.9	6
209	Restrictive irrigation improves yield and reduces risk for faba bean across the Middle East and North Africa: A modeling study. Agricultural Systems, 2021, 189, 103068.	3.2	6
210	Plant waterflow restrictions among sweet corn lines related to limitedâ€ŧranspiration trait. Crop Science, 2022, 62, 1242-1250.	0.8	6
211	Identifying plant traits to increase chickpea yield in water-limited environments. Field Crops Research, 2012, 133, 186-196.	2.3	5
212	Chemical Screen for Limited-Transpiration-Rate Trait Among Sorghum Genotypes. Journal of Crop Improvement, 2014, 28, 377-389.	0.9	5
213	Plant Survival of Drought During Establishment: An Interspecific Comparison of Five Grain Legumes. Crop Science, 2015, 55, 1264-1273.	0.8	5
214	Leaf emergence (phyllochron index) and leaf expansion response to soil drying in cowpea genotypes. Physiologia Plantarum, 2017, 160, 201-208.	2.6	5
215	Early Partial Stomata Closure with Soil Drying. SpringerBriefs in Environmental Science, 2017, , 5-9.	0.3	5
216	Influence of plant density and growth habit of common bean on leaf area development and N accumulation. Journal of Crop Improvement, 2019, 33, 620-632.	0.9	5

#	Article	IF	CITATIONS
217	Root osmotic potential and length for two maize lines differing in leaf osmotic potential. Journal of Crop Improvement, 2019, 33, 429-444.	0.9	5
218	"Natural Evaporation from Open Water, Bare Soil and Grass―by Harold L. Penman, Proceedings of the Royal Society of London (1948) A193:120-146. Crop Science, 2019, 59, 2297-2299.	0.8	5
219	"Transpiration and crop yields―by C.T. de Wit, 1958, Institute of biological and chemical research of field crops and herbage, No. 64.6, Wageningen, the Netherlands. Crop Science, 2020, 60, 29-31.	0.8	5
220	Transpiration response to vapor pressure deficit and soil drying among quinoa genotypes (<i>Chenopodium quinoa</i> Willd.). Journal of Crop Improvement, 2021, 35, 291-302.	0.9	5
221	Impact of drought and temperature constraints on development and growth of faba bean (Vicia faba) Tj ETQq1 I	0,784314	4 rgβT /Overle
222	Soybean. SpringerBriefs in Environmental Science, 2017, , 17-26.	0.3	4
223	Mineral concentrations in four tropical forages as affected by increasing daylength. II. Microminerals*. Communications in Soil Science and Plant Analysis, 2002, 33, 2001-2009.	0.6	3
224	Comment on "Theoretical Analysis of Soil and Plant Traits Influencing Daily Plant Water Flux on Drying Soils―by T.R. Sinclair. Agron. J. 97:1148-1152 (2005). Agronomy Journal, 2007, 99, 1188-1189.	0.9	3
225	Using an <scp>A</scp> rrheniusâ€ŧype function to describe temperature response of plant developmental processes: inference and cautions. New Phytologist, 2016, 210, 377-379.	3.5	3
226	Hydraulic Conductivity Changes in Soybean Plant-Soil System with Decreasing Soil Volumetric Water Content. Journal of Crop Improvement, 2016, 30, 713-723.	0.9	3
227	Limited-Transpiration Rate Under Elevated Atmospheric Vapor Pressure Deficit. SpringerBriefs in Environmental Science, 2017, , 11-16.	0.3	3
228	"The Biological Yield and Harvest Index of Cereals as Agronomic and Plant Breeding Criteria―by C.M. Donald and J. Hamblin, <i>Advances in Agronomy</i> (1976) 28:361–405. Crop Science, 2019, 59, 850-852.	0.8	3
229	Leaf gas exchange recovery of soybean from water-deficit stress. Journal of Crop Improvement, 2020, 34, 785-799.	0.9	3
230	Microsphere stem blockage as a screen for nitrogenâ€fixation drought tolerance in soybean. Physiologia Plantarum, 2021, 172, 1376-1381.	2.6	3
231	Comparison of water flow capacity in leaves among sweet corn genotypes as basis for plant transpiration rate sensitivity to vapor pressure deficit. Crop Science, 0, , .	0.8	3
232	Climate change, interannual weather differences and conflicting responses among crop characteristics: the case of forage quality. Global Change Biology, 1995, 1, 157-160.	4.2	2
233	Mineral concentrations in four tropical forages as affected by increasing daylength. I. Macrominerals*. Communications in Soil Science and Plant Analysis, 2002, 33, 1991-2000.	0.6	2
234	Foliage freeze tolerance trait diversity in bahiagrass (<i>Paspalum notatum</i> Flügge). New Zealand Journal of Agricultural Research, 2008, 51, 191-198.	0.9	2

#	Article	IF	CITATIONS
235	Rooting Front and Water Uptake: What You See and Get May Differ. Agronomy Journal, 2015, 107, 1766-1770.	0.9	2
236	Nitrogen Fixation Establishment during Initial Growth of Grain Legume Species. Journal of Crop Improvement, 2018, 32, 50-58.	0.9	2
237	Strategies to Enhance Drought Tolerance in Peanut and Molecular Markers for Crop Improvement. Sustainable Development and Biodiversity, 2019, , 131-143.	1.4	2
238	Abscisic Acid and Sulfate Offer a Possible Explanation for Differences in Physiological Drought Response of Two Maize Near-Isolines. Plants, 2020, 9, 1713.	1.6	2
239	"Studies of the Uptake of Nitrate in Barley. I. Kinetics of ¹³ NO ₃ ^{â^`} Influx―by M.Y. Siddiqi, A.D.M. Glass, T.J. Ruth, and T.W. Rufty, Jr., <i>Plant Physiology</i> (1990) 93:1426–1432. Crop Science, 2021, 61, 21-23.	0.8	2
240	Analysis for Improved Sowing Date for Winter Faba Bean in Morocco. International Journal of Plant Production, 2021, 15, 513.	1.0	2
241	Leaf ureide degradation and N 2 fixation tolerance to water deficit in soybean 1. Journal of Experimental Botany, 2001, 52, 153-159.	2.4	2
242	Fresh sweet corn yield sensitivity to deficit nitrogen and water conditions. Journal of Crop Improvement, 2022, 36, 593-603.	0.9	2
243	Quantifying Leaf Area Development Parameters for Cowpea [Vigna unguiculata (L.) Walpers]. Crop Science, 2016, 56, 3209-3217.	0.8	1
244	"A Model for Simulating Photosynthesis in Plant Communities―by W.G. Duncan, R.S. Loomis, W.A. Williams, and R. Hanau, Hilgardia (1967) 38:181–205. Crop Science, 2019, 59, 15-18.	0.8	1
245	"Cycling of aminoâ€nitrogen and other nutrients between shoots and roots in cereals—A possible mechanism integrating shoot and root in the regulation of nutrient uptake―by H.D. Cooper and D.T. Clarkson, Journal of Experimental Botany (1989) 40:753–762. Crop Science, 2020, 60, 2192-2194.	0.8	1
246	Registration of soybean germplasm lines R10â€2436 and R10â€2710 with drought tolerance traits and high yield under moderate water stress. Journal of Plant Registrations, 2020, 14, 189-196.	0.4	1
247	"Water dynamics in the soilâ€plantâ€atmosphere system―by J.T. Ritchie, Plant and Soil (1981) 58:81–96. Science, 2020, 60, 541-543.	Crop 0.8	1
248	Nitrogen-fixation drought tolerance in virginia-type peanut. Journal of Crop Improvement, 2020, 34, 540-548.	0.9	1
249	An exploration of the variability of physiological responses to soil drying in relation with C/N balance across three species of the underâ€utilized genus Vigna. Physiologia Plantarum, 2021, 172, 477-486.	2.6	1
250	"Basis of yield component compensation in crop plants with special reference to field bean, <i>Phaseolus vulgaris</i> ―by M. Wayne Adams, <i>Crop Science</i> (1967) 7, 505–510. Crop Science, 2021, 61, 863-865.	0.8	1
251	Leaf expansion and recovery from soil drying in soybean genotypes. Journal of Crop Improvement, 2021, 35, 96-110.	0.9	1
252	Osmotic Potential and Starch Accumulation in Leaves of Fieldâ€Grown Soybean 1. Crop Science, 1987, 27, 80-84.	0.8	1

#	Article	IF	CITATIONS
253	"A Biometeorological Time Scale for Cereal Crop Involving Day and Night Temperatures and Photoperiod―by George W. Robertson, International Journal of Biometeorology (1968) 12:191–223. Crop Science, 2018, 58, 2229-2232.	0.8	0
254	Hands-On, Low-Cost Laboratory Exercises for Middle and High School Biology Classes. Journal of Natural Resources and Life Sciences Education, 1996, 25, 109-110.	0.3	0
255	Interactive effects of level of nitrogen and irrigation application on maize yield. Journal of Plant Nutrition, 0, , 1-7.	0.9	0