Seyeong Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9326016/publications.pdf

Version: 2024-02-01

759233 677142 24 837 12 22 h-index citations g-index papers 24 24 24 1844 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Exploiting Ternary Blends to Accurately Control the Coloration of Semitransparent, Nonâ€Fullerene, Organic Solar Cells. Solar Rrl, 2021, 5, 2000742.	5.8	9
2	Dichroic Sb 2 O 3 /Ag/Sb 2 O 3 Electrodes for Colorful Semitransparent Organic Solar Cells. Solar Rrl, 2020, 4, 2000201.	5.8	15
3	Twisted Linker Effect on Naphthalene Diimideâ∈Based Dimer Electron Acceptors for Nonâ∈fullerene Organic Solar Cells. Macromolecular Rapid Communications, 2018, 39, e1800108.	3.9	8
4	Non-halogenated diphenyl-chalcogenide solvent processing additives for high-performance polymer bulk-heterojunction solar cells. RSC Advances, 2018, 8, 39777-39783.	3.6	6
5	The introduction of a perovskite seed layer for high performance perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 20138-20144.	10.3	12
6	Formamidinium-based planar heterojunction perovskite solar cells with alkali carbonate-doped zinc oxide layer. RSC Advances, 2018, 8, 24110-24115.	3.6	10
7	Macromol. Rapid Commun. 14/2018. Macromolecular Rapid Communications, 2018, 39, 1870034.	3.9	0
8	Implementation of Lowâ€Power Electronic Devices Using Solutionâ€Processed Tantalum Pentoxide Dielectric. Advanced Functional Materials, 2018, 28, 1704215.	14.9	17
9	Hot slot die coating for additive-free fabrication of high performance roll-to-roll processed polymer solar cells. Energy and Environmental Science, 2018, 11, 3248-3255.	30.8	85
10	Synthesis and photovoltaic properties of three different types of terpolymers. Materials Chemistry Frontiers, 2017, 1, 1147-1155.	5.9	6
11	Semi-crystalline photovoltaic polymers with siloxane-terminated hybrid side-chains. Science China Chemistry, 2017, 60, 528-536.	8.2	3
12	High-efficiency photovoltaic cells with wide optical band gap polymers based on fluorinated phenylene-alkoxybenzothiadiazole. Energy and Environmental Science, 2017, 10, 1443-1455.	30.8	84
13	A New Dithienopyridine-Based Polymer for an Organic Electronics. Journal of Nanoscience and Nanotechnology, 2017, 17, 5792-5795.	0.9	O
14	Efficiency Exceeding 11% in Tandem Polymer Solar Cells Employing High Openâ€Circuit Voltage Wideâ€Bandgap Ï€â€Conjugated Polymers. Advanced Energy Materials, 2017, 7, 1700782.	19.5	24
15	Optically Tunable Plasmonic Two-Dimensional Ag Quantum Dot Arrays for Optimal Light Absorption in Polymer Solar Cells. Journal of Physical Chemistry C, 2017, 121, 17569-17576.	3.1	9
16	Dithieno[2,3â€d:2',3'â€d']benzo[1,2â€b:4,5â€b']dithiophene (DTBDAT)â€based copolymers for highâ€performa organic solar cells. Journal of Polymer Science Part A, 2016, 54, 3182-3192.	ance 2.3	8
17	Ternary Halide Perovskites for Highly Efficient Solution-Processed Hybrid Solar Cells. ACS Energy Letters, 2016, 1, 712-718.	17.4	24
18	2,1,3â€benzothiadiazoleâ€5,6â€dicarboxylicimide based semicrystalline polymers for photovoltaic cells. Journal of Polymer Science Part A, 2016, 54, 3826-3834.	2.3	5

SEYEONG SONG

#	Article	IF	CITATION
19	Medium bandgap copolymers based on carbazole and quinoxaline exceeding 1.0 V open-circuit voltages. RSC Advances, 2016, 6, 17624-17631.	3.6	5
20	Control of Charge Dynamics via Use of Nonionic Phosphonate Chains and Their Effectiveness for Inverted Structure Solar Cells. Advanced Energy Materials, 2015, 5, 1500844.	19.5	28
21	Benzodithiophene-thiophene-based photovoltaic polymers with different side-chains. Journal of Polymer Science Part A, 2015, 53, 854-862.	2.3	15
22	Conjugated polyelectrolyte hole transport layer for inverted-type perovskite solar cells. Nature Communications, 2015, 6, 7348.	12.8	281
23	Thienoisoindigo (TIIG)-based small molecules for the understanding of structure–property–device performance correlations. Journal of Materials Chemistry A, 2015, 3, 9899-9908.	10.3	33
24	Interplay of Intramolecular Noncovalent Coulomb Interactions for Semicrystalline Photovoltaic Polymers. Chemistry of Materials, 2015, 27, 5997-6007.	6.7	150