Vinicius M Placco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9326003/publications.pdf

Version: 2024-02-01

76196 54797 7,395 113 40 84 citations h-index g-index papers 114 114 114 9390 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Multi-messenger Observations of a Binary Neutron Star Merger < sup > * < /sup > . Astrophysical Journal Letters, 2017, 848, L12.	3.0	2,805
2	CARBON-ENHANCED METAL-POOR STAR FREQUENCIES IN THE GALAXY: CORRECTIONS FOR THE EFFECT OF EVOLUTIONARY STATUS ON CARBON ABUNDANCES. Astrophysical Journal, 2014, 797, 21.	1.6	241
3	Early spectra of the gravitational wave source GW170817: Evolution of a neutron star merger. Science, 2017, 358, 1574-1578.	6.0	240
4	OBSERVATIONAL CONSTRAINTS ON FIRST-STAR NUCLEOSYNTHESIS. I. EVIDENCE FOR MULTIPLE PROGENITORS OF CEMP-NO STARS. Astrophysical Journal, 2016, 833, 20.	1.6	143
5	The case for electron re-acceleration at galaxy cluster shocks. Nature Astronomy, 2017, 1, .	4.2	142
6	CARBON-ENHANCED METAL-POOR STARS IN SDSS/SEGUE. I. CARBON ABUNDANCE ESTIMATION AND FREQUENCY OF CEMP STARS. Astronomical Journal, 2013, 146, 132.	1.9	124
7	J-PLUS: The Javalambre Photometric Local Universe Survey. Astronomy and Astrophysics, 2019, 622, A176.	2.1	124
8	AN ELEMENTAL ASSAY OF VERY, EXTREMELY, AND ULTRA-METAL-POOR STARS. Astrophysical Journal, 2015, 807, 173.	1.6	115
9	The role of binaries in the enrichment of the early Galactic halo. Astronomy and Astrophysics, 2016, 588, A3.	2.1	114
10	The R-process Alliance: First Release from the Southern Search for R-process-enhanced Stars in the Galactic Halo*. Astrophysical Journal, 2018, 858, 92.	1.6	111
11	Observations of the First Electromagnetic Counterpart to a Gravitational-wave Source by the TOROS Collaboration. Astrophysical Journal Letters, 2017, 848, L29.	3.0	96
12	Dynamical Relics of the Ancient Galactic Halo. Astrophysical Journal, 2020, 891, 39.	1.6	94
13	The Southern Photometric Local Universe Survey (S-PLUS): improved SEDs, morphologies, and redshifts with 12 optical filters. Monthly Notices of the Royal Astronomical Society, 2019, 489, 241-267.	1.6	92
14	The R-Process Alliance: First Release from the Northern Search for r-process-enhanced Metal-poor Stars in the Galactic Halo. Astrophysical Journal, 2018, 868, 110.	1.6	88
15	The role of binaries in the enrichment of the early Galactic halo. Astronomy and Astrophysics, 2016, 586, A160.	2.1	83
16	EXPLORING THE ORIGIN OF LITHIUM, CARBON, STRONTIUM, AND BARIUM WITH FOUR NEW ULTRA METAL-POOR STARS. Astrophysical Journal, 2014, 787, 162.	1.6	76
17	SD 1313–0019: ANOTHER SECOND-GENERATION STAR WITH [Fe/H] = â~'5.0, OBSERVED WITH THE <i>MAGELLAN</i> TELESCOPE. Astrophysical Journal Letters, 2015, 810, L27.	3.0	71
18	POPULATION STUDIES. XIII. A NEW ANALYSIS OF THE BIDELMAN-MACCONNELL "WEAK-METAL― STARS—CONFIRMATION OF METAL-POOR STARS IN THE THICK DISK OF THE GALAXY. Astrophysical Journal, 2014, 794, 58.	1.6	70

#	Article	IF	Citations
19	APOGEE Chemical Abundances of the Sagittarius Dwarf Galaxy. Astrophysical Journal, 2017, 845, 162.	1.6	68
20	Atypical Mg-poor Milky Way Field Stars with Globular Cluster Second-generation-like Chemical Patterns. Astrophysical Journal Letters, 2017, 846, L2.	3.0	66
21	The R-Process Alliance: 2MASS J09544277+5246414, the Most Actinide-enhanced R-II Star Known. Astrophysical Journal Letters, 2018, 859, L24.	3.0	64
22	CARBON-ENHANCED METAL-POOR STARS: CEMP- $\langle i \rangle$ s $\langle i \rangle$ and CEMP-no SUBCLASSES IN THE HALO SYSTEM OF THE MILKY WAY. Astrophysical Journal, 2014, 788, 180.	1.6	63
23	The $\langle i \rangle R \langle j i \rangle$ -Process Alliance: Fourth Data Release from the Search for $\langle i \rangle R \langle j i \rangle$ -process-enhanced Stars in the Galactic Halo. Astrophysical Journal, Supplement Series, 2020, 249, 30.	3.0	61
24	METAL-POOR STARS OBSERVED WITH THE < i> MAGELLAN < / i> TELESCOPE. III. NEW EXTREMELY AND ULTRA METAL-POOR STARS FROM SDSS/SEGUE AND INSIGHTS ON THE FORMATION OF ULTRA METAL-POOR STARS. Astrophysical Journal, 2015, 809, 136.	1.6	60
25	Radioactive Ion beams in Brazil (RIBRAS)â<†. European Physical Journal A, 2005, 25, 733-736.	1.0	59
26	METAL-POOR STARS OBSERVED WITH THE MAGELLAN TELESCOPE. I. CONSTRAINTS ON PROGENITOR MASS AND METALLICITY OF AGB STARS UNDERGOING <i>>> Journal, 2013, 770, 104.</i>	1.6	57
27	OBSERVATIONAL CONSTRAINTS ON FIRST-STAR NUCLEOSYNTHESIS. II. SPECTROSCOPY OF AN ULTRA METAL-POOR CEMP-no STAR*. Astrophysical Journal, 2016, 833, 21.	1.6	56
28	Evidence for an Aspherical Population III Supernova Explosion Inferred from the Hyper-metal-poor Star HE 1327–2326 ^{â^—} . Astrophysical Journal, 2019, 876, 97.	1.6	55
29	The miniJPAS survey: A preview of the Universe in 56 colors. Astronomy and Astrophysics, 2021, 653, A31.	2.1	54
30	Galactic Archeology with the AEGIS Survey: The Evolution of Carbon and Iron in the Galactic Halo. Astrophysical Journal, 2018, 861, 146.	1.6	52
31	METAL-POOR STARS OBSERVED WITH THE MAGELLAN TELESCOPE. II. DISCOVERY OF FOUR STARS WITH [Fe/H] â@½ –3.5. Astrophysical Journal, 2014, 781, 40.	1.6	51
32	IDENTIFICATION OF NEODYMIUM IN THE APOGEE H-BAND SPECTRA. Astrophysical Journal, 2016, 833, 81.	1.6	51
33	The R-Process Alliance: A Comprehensive Abundance Analysis of HD 222925, a Metal-poor Star with an Extreme R-process Enhancement of $[Eu/H]\hat{A}=\hat{A}\hat{a}^{2}0.14$. Astrophysical Journal, 2018, 865, 129.	1.6	49
34	Linemake: An Atomic and Molecular Line List Generator. Research Notes of the AAS, 2021, 5, 92.	0.3	49
35	THE FRACTIONS OF INNER- AND OUTER-HALO STARS IN THE LOCAL VOLUME. Astrophysical Journal Letters, 2015, 813, L28.	3.0	48
36	BRIGHT METAL-POOR STARS FROM THE HAMBURG/ESO SURVEY. II. A CHEMODYNAMICAL ANALYSIS. Astrophysical Journal, 2017, 835, 81.	1.6	48

#	Article	IF	Citations
37	RAVE J203843.2–002333: The First Highly R-process-enhanced Star Identified in the RAVE Survey [*] . Astrophysical Journal, 2017, 844, 18.	1.6	48
38	Abundances of carbon-enhanced metal-poor stars as constraints on their formation. Astronomy and Astrophysics, 2016, 588, A37.	2.1	47
39	On-sky commissioning of Hamamatsu CCDs in GMOS-S. Proceedings of SPIE, 2016, , .	0.8	46
40	The R-Process Alliance: First Magellan/MIKE Release from the Southern Search for R-process-enhanced Stars*. Astrophysical Journal, 2020, 898, 150.	1.6	46
41	Constraining cosmic scatter in the Galactic halo through a differential analysis of metal-poor stars. Astronomy and Astrophysics, 2017, 608, A46.	2.1	42
42	Dynamically Tagged Groups of Very Metal-poor Halo Stars from the HK and Hamburg/ESO Surveys. Astrophysical Journal, 2021, 907, 10.	1.6	41
43	The r-process Pattern of a Bright, Highly r-process-enhanced Metal-poor Halo Star at [Fe/H]Ââ^1⁄4Ââ^'2. Astrophysical Journal Letters, 2018, 854, L20.	3.0	38
44	J-PLUS: Identification of low-metallicity stars with artificial neural networks using SPHINX. Astronomy and Astrophysics, 2019, 622, A182.	2.1	38
45	Abundances and kinematics of carbon-enhanced metal-poor stars in the Galactic halo. Astronomy and Astrophysics, 2019, 623, A128.	2.1	37
46	G64-12 AND G64-37 ARE CARBON-ENHANCED METAL-POOR STARS. Astrophysical Journal Letters, 2016, 829, L24.	3.0	36
47	J-PLUS: photometric calibration of large-area multi-filter surveys with stellar and white dwarf loci. Astronomy and Astrophysics, 2019, 631, A119.	2.1	36
48	Chemical Cartography. I. A Carbonicity Map of the Galactic Halo. Astrophysical Journal, 2017, 836, 91.	1.6	34
49	The R-Process Alliance: Chemodynamically Tagged Groups of Halo r-process-enhanced Stars Reveal a Shared Chemical-evolution History. Astrophysical Journal, 2021, 908, 79.	1.6	34
50	<i>HUBBLE SPACE TELESCOPE</i> NEAR-ULTRAVIOLET SPECTROSCOPY OF THE BRIGHT CEMP-NO STAR BD+44°493. Astrophysical Journal, 2014, 790, 34.	1.6	33
51	<i>HUBBLE SPACE TELESCOPE</i> NEAR-ULTRAVIOLET SPECTROSCOPY OF BRIGHT CEMP- <i>s</i> STARS. Astrophysical Journal, 2015, 812, 109.	1.6	33
52	The age structure of the Milky Way's halo. Nature Physics, 2016, 12, 1170-1176.	6.5	33
53	Spectroscopic Validation of Low-metallicity Stars from RAVE. Astronomical Journal, 2018, 155, 256.	1.9	32
54	The R-process Alliance: A Nearly Complete R-process Abundance Template Derived from Ultraviolet Spectroscopy of the R-process-enhanced Metal-poor Star HD 222925*. Astrophysical Journal, Supplement Series, 2022, 260, 27.	3.0	32

#	Article	IF	Citations
55	SEARCHES FOR METAL-POOR STARS FROM THE HAMBURG/ESO SURVEY USING THE CH <i>G</i> BAND. Astronomical Journal, 2011, 142, 188.	1.9	30
56	CHRONOGRAPHY OF THE MILKY WAY'S HALO SYSTEM WITH FIELD BLUE HORIZONTAL-BRANCH STARS. Astrophysical Journal Letters, 2015, 813, L16.	3.0	28
57	DETECTION OF PHOSPHORUS, SULPHUR, AND ZINC IN THE CARBON-ENHANCED METAL-POOR STAR BD+44 493*. Astrophysical Journal Letters, 2016, 824, L19.	3.0	28
58	Discovery of a New Stellar Subpopulation Residing in the (Inner) Stellar Halo of the Milky Way. Astrophysical Journal Letters, 2019, 886, L8.	3.0	28
59	Metal-poor Stars Observed with the Automated Planet Finder Telescope. I. Discovery of Five Carbon-enhanced Metal-poor Stars from LAMOST. Astrophysical Journal, 2019, 875, 89.	1.6	28
60	J-PLUS: Morphological star/galaxy classification by PDF analysis. Astronomy and Astrophysics, 2019, 622, A177.	2.1	28
61	Metal-poor Stars Observed with the Automated Planet Finder Telescope. II. Chemodynamical Analysis of Six Low-metallicity Stars in the Halo System of the Milky Way. Astrophysical Journal, 2019, 882, 27.	1.6	27
62	The miniJPAS survey: star-galaxy classification using machine learning. Astronomy and Astrophysics, 2021, 645, A87.	2.1	26
63	[O/Fe] ESTIMATES FOR CARBON-ENHANCED METAL-POOR STARS FROM NEAR-INFRARED SPECTROSCOPY. Astronomical Journal, 2011, 141, 102.	1.9	25
64	The Photometric Metallicity and Carbon Distributions of the Milky Way's Halo and Solar Neighborhood from S-PLUS Observations of SDSS Stripe 82. Astrophysical Journal, 2021, 912, 147.	1.6	25
65	Cosmological Insights into the Early Accretion of r-process-enhanced Stars. I. A Comprehensive Chemodynamical Analysis of LAMOST J1109+0754. Astrophysical Journal, 2020, 903, 88.	1.6	25
66	GRACES: Gemini remote access to CFHT ESPaDOnS spectrograph through the longest astronomical fiber ever made: experimental phase completed. Proceedings of SPIE, 2014, , .	0.8	24
67	THE FREQUENCY OF FIELD BLUE-STRAGGLER STARS IN THE THICK DISK AND HALO SYSTEM OF THE GALAXY. Astrophysical Journal, 2015, 801, 116.	1.6	24
68	The R-Process Alliance: Discovery of the First Metal-poor Star with a Combined r- and s-process Element Signature*. Astrophysical Journal, 2018, 862, 174.	1.6	24
69	The R-process Alliance: The Peculiar Chemical Abundance Pattern of RAVE J183013.5â^'455510*. Astrophysical Journal, 2020, 897, 78.	1.6	24
70	THE CHEMICAL ABUNDANCES OF STARS IN THE HALO (CASH) PROJECT. III. A NEW CLASSIFICATION SCHEME FOR CARBON-ENHANCED METAL-POOR STARS WITH s-PROCESS ELEMENT ENHANCEMENT. Astrophysical Journal, 2015, 814, 121.	1.6	22
71	The R-Process Alliance: Chemical Abundances for a Trio of r-process-enhanced Stars—One Strong, One Moderate, and One Mild*. Astrophysical Journal, 2018, 864, 43.	1.6	22
72	SPLUS J210428.01â ⁻ '004934.2: An Ultra Metal-poor Star Identified from Narrowband Photometry*. Astrophysical Journal Letters, 2021, 912, L32.	3.0	22

#	Article	IF	Citations
73	The enigmatic globular cluster UKS 1 obscured by the bulge: <i>H</i> -band discovery of nitrogen-enhanced stars. Astronomy and Astrophysics, 2020, 643, A145.	2.1	22
74	2MASS J18082002â^'5104378: The brightest ($\langle i \rangle V \langle i \rangle = 11.9$) ultra metal-poor star. Astronomy and Astrophysics, 2016, 585, L5.	2.1	21
75	The R-Process Alliance: Spectroscopic Follow-up of Low-metallicity Star Candidates from the Best & Survey. Astrophysical Journal, 2019, 870, 122.	1.6	21
76	APOGEE discovery of a chemically atypical star disrupted from NGC 6723 and captured by the Milky Way bulge. Astronomy and Astrophysics, 2021, 647, A64.	2.1	20
77	The Pristine Inner Galaxy Survey (PIGS) III: carbon-enhanced metal-poor stars in the bulge. Monthly Notices of the Royal Astronomical Society, 2021, 505, 1239-1253.	1.6	20
78	Discovery of a Large Population of Nitrogen-enhanced Stars in the Magellanic Clouds. Astrophysical Journal Letters, 2020, 903, L17.	3.0	20
79	Dynamically Tagged Groups of Metal-poor Stars from the Best and Brightest Survey. Astrophysical Journal, 2022, 926, 26.	1.6	20
80	A SEARCH FOR UNRECOGNIZED CARBON-ENHANCED METAL-POOR STARS IN THE GALAXY. Astronomical Journal, 2010, 139, 1051-1065.	1.9	19
81	Identification of a Group III CEMP-no Star in the Dwarf Spheroidal Galaxy Canes Venatici I. Astrophysical Journal, 2020, 894, 7.	1.6	19
82	The R-Process Alliance: Discovery of a Low- \hat{l}_{\pm} , r-process-enhanced Metal-poor Star in the Galactic Halo. Astrophysical Journal, 2019, 874, 148.	1.6	18
83	Discovery of a nitrogen-enhanced mildly metal-poor binary system: Possible evidence for pollution from an extinct AGB star. Astronomy and Astrophysics, 2019, 631, A97.	2.1	18
84	Targeting Bright Metal-poor Stars in the Disk and Halo Systems of the Galaxy. Astrophysical Journal, 2021, 913, 11.	1.6	18
85	J-PLUS: Systematic impact of metallicity on photometric calibration with the stellar locus. Astronomy and Astrophysics, 2021, 654, A61.	2.1	17
86	Data Release 2 of S-PLUS: Accurate template-fitting based photometry covering â^¼1000 deg2 in 12 optical filters. Monthly Notices of the Royal Astronomical Society, 2022, 511, 4590-4618.	1.6	16
87	Metal-poor Stars Observed with the Southern African Large Telescope. Astrophysical Journal, 2020, 905, 20.	1.6	15
88	The Metallicity Gradient and Complex Formation History of the Outermost Halo of the Milky Way. Astrophysical Journal, 2020, 894, 34.	1.6	13
89	Constraints on the Galactic Inner Halo Assembly History from the Age Gradient of Blue Horizontal-branch Stars. Astrophysical Journal, 2019, 884, 67.	1.6	12
90	Assessing the photometric redshift precision of the S-PLUS survey: the Stripe-82 as a test-case. Monthly Notices of the Royal Astronomical Society, 2020, 499, 3884-3908.	1.6	12

#	Article	IF	Citations
91	The R-Process Alliance: A Very Metal-poor, Extremely r-process-enhanced Star with [Eu/Fe]Â=Â+Â2.2, and the Class of r-IIIÂStars*. Astrophysical Journal, 2020, 898, 40.	1.6	11
92	SEVEN NEW CARBON-ENHANCED METAL-POOR RR LYRAE STARS. Astrophysical Journal, 2014, 787, 6.	1.6	10
93	The Origin of the 300 km s ^{â^'1} Stream near Segue 1. Astrophysical Journal, 2018, 866, 42.	1.6	10
94	Detection of Pb II in the Ultraviolet Spectra of Three Metal-poor Stars*. Astrophysical Journal Letters, 2020, 902, L24.	3.0	10
95	J-PLUS: Searching for very metal-poor star candidates using the SPEEM pipeline. Astronomy and Astrophysics, 2022, 657, A35.	2.1	10
96	Chandra Observations of the Spectacular A3411–12 Merger Event. Astrophysical Journal, 2019, 887, 31.	1.6	9
97	Two Populations of Carbon-enhanced Metal-poor Stars in the Disk System of the Milky Way. Astrophysical Journal, 2021, 914, 100.	1.6	7
98	Metal-poor Stars Observed with the Southern African Large Telescope II. An Extended Sample. Astrophysical Journal, 2022, 927, 13.	1.6	7
99	Carbon-enhanced metal-poor stars in the SDSS–APOGEE data base. Monthly Notices of the Royal Astronomical Society, 2017, 471, 404-421.	1.6	5
100	AUTOMATED DETERMINATION OF [Fe/H] AND [C/Fe] FROM LOW-RESOLUTION SPECTROSCOPY. Astronomical Journal, 2009, 138, 533-539.	1.9	4
101	Silicon and strontium abundances of very metal-poor stars determined from near-infrared spectra. Publication of the Astronomical Society of Japan, 2022, 74, 273-282.	1.0	3
102	New Highly r-Process-Enhanced Halo Stars. Proceedings of the International Astronomical Union, 2017, 13, 277-278.	0.0	1
103	Refined Estimates of Carbon Abundances for Carbonâ€Enhanced Metalâ€Poor Stars. , 2008, , .		0
104	Abundance Patterns Among Very Metal-Poor Stars in the Halo of the Galaxy: A Statistical Approach. Proceedings of the International Astronomical Union, 2009, 5, 412-413.	0.0	0
105	A Search for Unrecognized Carbon-Enhanced Metal-Poor Stars. Proceedings of the International Astronomical Union, 2009, 5, 132-133.	0.0	О
106	Near-IR Spectroscopy of CEMP Stars with SOAR/OSIRIS. Proceedings of the International Astronomical Union, 2009, 5, 126-127.	0.0	0
107	Kinematic and Chemical Analysis of AEGIS Survey Stars. Proceedings of the International Astronomical Union, 2017, 13, 283-284.	0.0	0
108	RAVE J2038-0023: The First Bright r-Process Enhanced Star Identified in the RAVE Survey., 2017,,.		0

#	Article	IF	CITATIONS
109	Lifting the Veil on Ultra Metal-Poor Stars in the Outermost Halo. Proceedings of the International Astronomical Union, 2017, 13, 389-390.	0.0	0
110	Probing Galactic Chemical Evolution with J-PLUS Photometry. Proceedings of the International Astronomical Union, 2017, 13, 383-384.	0.0	0
111	Measurement of [Fe/H] and [C/Fe] for Metal-Poor Stars from the RAVE Survey. Proceedings of the International Astronomical Union, 2017, 13, 353-354.	0.0	0
112	The role of binaries in the enrichment of the early Galactic halo. Astronomy and Astrophysics, 2018, 620, C3.	2.1	0
113	CNO Abundances in Metal-Poor Stars. , 2011, , .		0