Ning Kang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9325856/publications.pdf

Version: 2024-02-01

38 papers 2,541 citations

331538
21
h-index

302012 39 g-index

40 all docs

40 docs citations

times ranked

40

4051 citing authors

#	Article	IF	CITATIONS
1	Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nature Materials, 2015, 14, 1135-1141.	13.3	1,045
2	Wrinkle-Free Single-Crystal Graphene Wafer Grown on Strain-Engineered Substrates. ACS Nano, 2017, 11, 12337-12345.	7.3	172
3	Towards super-clean graphene. Nature Communications, 2019, 10, 1912.	5.8	133
4	Surface Monocrystallization of Copper Foil for Fast Growth of Large Single rystal Graphene under Free Molecular Flow. Advanced Materials, 2016, 28, 8968-8974.	11.1	128
5	Strongly Coupled High-Quality Graphene/2D Superconducting Mo ₂ C Vertical Heterostructures with Aligned Orientation. ACS Nano, 2017, 11, 5906-5914.	7.3	110
6	Unique Domain Structure of Two-Dimensional α-Mo ₂ C Superconducting Crystals. Nano Letters, 2016, 16, 4243-4250.	4.5	101
7	Surface Engineering of Copper Foils for Growing Centimeter-Sized Single-Crystalline Graphene. ACS Nano, 2016, 10, 2922-2929.	7.3	89
8	Nitrogen cluster doping for high-mobility/conductivity graphene films with millimeter-sized domains. Science Advances, 2019, 5, eaaw8337.	4.7	77
9	Free-Standing Two-Dimensional Single-Crystalline InSb Nanosheets. Nano Letters, 2016, 16, 834-841.	4.5	72
10	Magnetotransport Properties in High-Quality Ultrathin Two-Dimensional Superconducting Mo ₂ C Crystals. ACS Nano, 2016, 10, 4504-4510.	7.3	69
11	Photoelectrical response of hybrid graphene-PbS quantum dot devices. Applied Physics Letters, 2013, 103, .	1.5	56
12	Copper-Containing Carbon Feedstock for Growing Superclean Graphene. Journal of the American Chemical Society, 2019, 141, 7670-7674.	6.6	47
13	Electron–Hole Symmetry Breaking in Charge Transport in Nitrogen-Doped Graphene. ACS Nano, 2017, 11, 4641-4650.	7.3	46
14	Ultrafast growth of nanocrystalline graphene films by quenching and grain-size-dependent strength and bandgap opening. Nature Communications, 2019, 10, 4854.	5.8	43
15	A Forceâ€Engineered Lint Roller for Superclean Graphene. Advanced Materials, 2019, 31, e1902978.	11.1	40
16	Lowâ€Temperature and Rapid Growth of Large Singleâ€Crystalline Graphene with Ethane. Small, 2018, 14, 1702916.	5.2	39
17	<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mn>0</mml:mn><mml:mtext>â^²</mml:mtext><m 2017,="" 95<="" b,="" devices.="" dot="" hybrid="" in="" nanowire="" p="" phase="" physical="" quantum="" review="" superconductor–insb="" transition=""></m></mml:math>	ıml:mi>Ï€<	:/mggl:mi> <u m
18	Coherent Charge Transport in Ballistic InSb Nanowire Josephson Junctions. Scientific Reports, 2016, 6, 24822.	1.6	26

#	Article	IF	CITATIONS
19	Two-Dimensional Quantum Transport in Free-Standing InSb Nanosheets. Nano Letters, 2019, 19, 561-569.	4.5	24
20	Formation of long single quantum dots in high quality InSb nanowires grown by molecular beam epitaxy. Nanoscale, 2015, 7, 14822-14828.	2.8	23
21	Phase-coherent transport and spin relaxation in InAs nanowires grown by molecule beam epitaxy. Applied Physics Letters, 2015, 106, .	1.5	21
22	Signature of quantum Griffiths singularity state in a layered quasi-one-dimensional superconductor. Nature Communications, 2018, 9, 4656.	5.8	21
23	Coexistence of induced superconductivity and quantum Hall states in InSb nanosheets. Physical Review B, 2019, 99, .	1.1	18
24	Grain Boundaries and Tilt-Angle-Dependent Transport Properties of a 2D Mo ₂ C Superconductor. Nano Letters, 2019, 19, 857-865.	4.5	18
25	Supercurrent and Multiple Andreev Reflections in InSb Nanosheet SNS Junctions. Physica Status Solidi (B): Basic Research, 2019, 256, 1800538.	0.7	13
26	Magnetotransport in Ultrathin 2-D Superconducting Mo2C Crystals. IEEE Transactions on Magnetics, 2017, 53, 1-4.	1.2	9
27	Effects of domain structures on vortex state of two-dimensional superconducting Mo ₂ C crystals. 2D Materials, 2019, 6, 021005.	2.0	8
28	Superhigh Uniform Magnetic Cr Substitution in a 2D Mo 2 C Superconductor for a Macroscopicâ€Scale Kondo Effect. Advanced Materials, 2020, 32, 2002825.	11.1	7
29	Magnetic Doping Induced Superconductivity-to-Incommensurate Density Waves Transition in a 2D Ultrathin Cr-Doped Mo ₂ C Crystal. ACS Nano, 2021, 15, 14938-14946.	7.3	7
30	Transport Properties of Topological Semimetal Tungsten Carbide in the 2D Limit. Advanced Electronic Materials, 2019, 5, 1800839.	2.6	5
31	Crossover from Coulomb blockade to ballistic transport in InAs nanowire devices. Nanotechnology, 2019, 30, 124001.	1.3	4
32	Realization and transport investigation of a single layer-twisted bilayer graphene junction. Carbon, 2020, 163, 105-112.	5.4	4
33	Charge transport and electron-hole asymmetry in low-mobility graphene/hexagonal boron nitride heterostructures. Journal of Applied Physics, 2018, 123, .	1.1	3
34	Transport signatures of relativistic quantum scars in a graphene cavity. Physical Review B, 2020, 101, .	1.1	3
35	Transport through a network of two-dimensional NbC superconducting crystals connected via weak links. Physical Review B, 2020, 101, .	1.1	2
36	One-dimensional electronic transport at the organic charge-transfer interfaces under high pressures. Applied Physics Letters, 2014, 104, 193302.	1.5	1

NING KANG

#	Article	lF	CITATIONS
37	Low-field magnetotransport in graphene cavity devices. Nanotechnology, 2018, 29, 205707.	1.3	1
38	Resonant Scattering in Proximityâ€Coupled Graphene/Superconducting Mo ₂ C Heterostructures. Advanced Science, 0, , 2201343.	5.6	1