
Yoshiyasu Hirano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9325694/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation. Scientific Reports, 2016, 6, 23058.	3.3	749
2	3D Printing of Continuous Carbon Fibre Reinforced Thermo-Plastic (CFRTP) Tensile Test Specimens. Open Journal of Composite Materials, 2016, 06, 18-27.	0.8	370
3	Coupled thermal–electrical analysis for carbon fiber/epoxy composites exposed to simulated lightning current. Composites Part A: Applied Science and Manufacturing, 2010, 41, 973-981.	7.6	263
4	Artificial lightning testing on graphite/epoxy composite laminate. Composites Part A: Applied Science and Manufacturing, 2010, 41, 1461-1470.	7.6	241
5	3D printing of composite sandwich structures using continuous carbon fiber and fiber tension. Composites Part A: Applied Science and Manufacturing, 2018, 113, 114-121.	7.6	179
6	3D printing of optimized composites with variable fiber volume fraction and stiffness using continuous fiber. Composites Science and Technology, 2020, 186, 107905.	7.8	117
7	Lightning damage suppression in a carbon fiber-reinforced polymer with a polyaniline-based conductive thermoset matrix. Composites Science and Technology, 2016, 127, 1-7.	7.8	102
8	Development of Variable Camber Morphing Airfoil Using Corrugated Structure. Journal of Aircraft, 2014, 51, 1023-1029.	2.4	93
9	3D compaction printing of a continuous carbon fiber reinforced thermoplastic. Composites Part A: Applied Science and Manufacturing, 2020, 137, 105985.	7.6	91
10	Piezoresistivity of unidirectional carbon/epoxy composites for multiaxial loading. Composites Science and Technology, 2009, 69, 1841-1846.	7.8	79
11	Instantaneous mechanical fastening of quasi-isotropic CFRP laminates by a self-piercing rivet. Composite Structures, 2012, 94, 3388-3393.	5.8	73
12	Development and characterization of CFRP using a polyaniline-based conductive thermoset matrix. Composites Science and Technology, 2015, 117, 277-281.	7.8	70
13	3D printing of discontinuous and continuous fibre composites using stereolithography. Additive Manufacturing, 2018, 24, 521-527.	3.0	69
14	Tensile property evaluations of 3D printed continuous carbon fiber reinforced thermoplastic composites. Advanced Composite Materials, 2020, 29, 147-162.	1.9	65
15	Lightning strike damage behavior of carbon fiber reinforced epoxy, bismaleimide, and polyetheretherketone composites. Composites Science and Technology, 2018, 161, 107-114.	7.8	61
16	Development of variable camber wing with morphing leading and trailing sections using corrugated structures. Journal of Intelligent Material Systems and Structures, 2016, 27, 2827-2836.	2.5	60
17	Effect of through-thickness electrical conductivity of CFRPs on lightning strike damages. Composites Part A: Applied Science and Manufacturing, 2018, 114, 429-438.	7.6	60
18	Through-thickness electric conductivity of toughened carbon-fibre-reinforced polymer laminates with resin-rich layers. Composites Science and Technology, 2016, 122, 67-72.	7.8	57

Yoshiyasu Hirano

#	Article	IF	CITATIONS
19	Fiber Line Optimization in Single Ply for 3D Printed Composites. Open Journal of Composite Materials, 2016, 06, 121-131.	0.8	54
20	Effects of Set Curvature and Fiber Bundle Size on the Printed Radius of Curvature by a Continuous Carbon Fiber Composite 3D Printer. Additive Manufacturing, 2018, 24, 93-102.	3.0	42
21	Polyaniline-based all-polymeric adhesive layer: An effective lightning strike protection technology for high residual mechanical strength of CFRPs. Composites Science and Technology, 2019, 172, 49-57.	7.8	42
22	Delamination analysis of CFRP laminates exposed to lightning strike considering cooling process. Composite Structures, 2018, 196, 55-62.	5.8	34
23	Mechanism of folding a fiber bundle in the curved section of 3D printed carbon fiber reinforced plastics. Advanced Composite Materials, 2020, 29, 247-257.	1.9	29
24	Mechanism of Electrical Resistance Change of a Thin CFRP Beam after Delamination Cracking. Journal of Solid Mechanics and Materials Engineering, 2010, 4, 1-11.	0.5	27
25	Stacking sequence optimizations for composite laminates using fractal branch and bound method: Application for supersonic panel flutter problem with buckling load condition. Advanced Composite Materials, 2004, 13, 89-106.	1.9	23
26	Damage Identification of Woven Graphite/Epoxy Composite Beams using the Electrical Resistance Change Method. Journal of Intelligent Material Systems and Structures, 2007, 18, 253-263.	2.5	22
27	Residual mechanical properties of carbon fibre reinforced thermoplastics with thin-ply prepreg after simulated lightning strike. Composites Part A: Applied Science and Manufacturing, 2017, 101, 185-194.	7.6	22
28	3D Printing of Continuous Fiber Reinforced Polymer Composites: Development, Application, and Prospective. , 2022, 1, 100016.		22
29	Monitoring of a CFRP-Stiffened Panel Manufactured by VaRTM Using Fiber-Optic Sensors. Advanced Composite Materials, 2008, 17, 125-137.	1.9	18
30	Experimental method for mode I fracture toughness of composite laminates using wedge loaded double cantilever beam specimens. Composites Part A: Applied Science and Manufacturing, 2018, 112, 119-125.	7.6	16
31	Reinforcing in the lay-up direction with self-heating for carbon fiber composites fabricated using a fused filament fabrication 3D printer. Composite Structures, 2021, 266, 113815.	5.8	15
32	Electrical Resistance Change of Thick CFRP Laminate for Self-Sensing. Journal of Solid Mechanics and Materials Engineering, 2010, 4, 658-668.	0.5	14
33	Damage behavior of CFRP subjected to simulated lightning current under air, reduced-pressure air, and N2 environments. Composite Structures, 2019, 230, 111519.	5.8	14
34	Visualization of lightning impulse current discharge on CFRP laminate. , 2014, , .		13
35	In-situ observation of microscopic damage in adhesively bonded CFRP joints under mode I and mode II loading. Composite Structures, 2019, 227, 111330.	5.8	13
36	Stacking-Sequence Optimization of Composite Delta Wing to Improve Flutter Limit Using Fractal Branch and Bound Method. JSME International Journal Series A-Solid Mechanics and Material Engineering, 2005, 48, 65-72.	0.4	12

Yoshiyasu Hirano

#	Article	IF	CITATIONS
37	Compressive strength degradation of the curved sections of 3D-printed continuous carbon fiber composite. Composites Part A: Applied Science and Manufacturing, 2021, 142, 106244.	7.6	10
38	Experimental and analytical validation of mode II fracture toughness tests for a type of double-lap joint. Composite Structures, 2020, 234, 111757.	5.8	8
39	Stacking Sequence Optimizations of Composites to Improve Panel Flutter at Supersonic Flow Using Fractal Branch and Bound Method Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2003, 69, 239-244.	0.2	7
40	Distributed strain and load monitoring of 6 m composite wing structure by FBG arrays and long-length FBGs. Proceedings of SPIE, 2012, , .	0.8	5
41	Testing method for evaluating mechanical properties of 3D printed CFRP with curved fibers by four-point bending test of L-shaped specimen. Composites Part C: Open Access, 2021, 6, 100187.	3.2	3
42	Residual strain relief effect on the electrical resistance measurement for delamination monitoring of carbon/PEEK laminates. Science and Engineering of Composite Materials, 2011, 18, .	1.4	2
43	Modified moving particle semi-implicit method for 3D print process simulations of short carbon fiber/polyamide-6 composites. Composites Part C: Open Access, 2021, 6, 100195.	3.2	2
44	High-speed imaging on static tensile test for unidirectional CFRP. Proceedings of SPIE, 2008, , .	0.8	1
45	Effect of Dent on Self-Sensing Method of CFRP. Advanced Materials Research, 2010, 123-125, 963-966.	0.3	1
46	Cutting Edge of Molding Techniques of Composite Materials. Zairyo/Journal of the Society of Materials Science, Japan, 2018, 67, 885-888.	0.2	1
47	Effectiveness of Lightning Damage Protection of CFRP with Polyaniline-Based Conductive Thermoset Matrix. Journal of the Japan Society for Aeronautical and Space Sciences, 2016, 64, 223-228.	0.1	1
48	Tensile-test-Property Evaluations of 3D Printed Continuous Carbon Fiber Reinforced Thermoplastic Composites. Journal of the Japan Society for Composite Materials, 2019, 45, 141-148.	0.2	1
49	Multi-Objective Stacking Sequence Optimization of Composite Wing Structure Using FBBM. , 2007, , .		0
50	Effect of Dent on Electrical Resistance Change Method for Delamination Monitoring. , 2010, , .		0
51	Effect of Plate Thickness and Paint on Lightning Strike Damage of Aluminum Alloy Sheet. Lecture Notes in Mechanical Engineering, 2020, 966-975	0.4	0