
Maria Kolokotroni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9325540/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The effect of the London urban heat island on building summer cooling demand and night ventilation strategies. Solar Energy, 2006, 80, 383-392.	2.9	282
2	London's urban heat island: Impact on current and future energy consumption in office buildings. Energy and Buildings, 2012, 47, 302-311.	3.1	280
3	Urban heat island intensity in London: An investigation of the impact of physical characteristics on changes in outdoor air temperature during summer. Solar Energy, 2008, 82, 986-998.	2.9	262
4	Cooling-energy reduction in air-conditioned offices by using night ventilation. Applied Energy, 1999, 63, 241-253.	5.1	154
5	The London Heat Island and building cooling design. Solar Energy, 2007, 81, 102-110.	2.9	148
6	Cool roof technology in London: An experimental and modelling study. Energy and Buildings, 2013, 67, 658-667.	3.1	139
7	Modelling the relative importance of the urban heat island and the thermal quality of dwellings for overheating in London. Building and Environment, 2012, 57, 223-238.	3.0	129
8	Increased Temperature and Intensification of the Urban Heat Island: Implications for Human Comfort and Urban Design. Built Environment, 2007, 33, 85-96.	0.4	99
9	A validated methodology for the prediction of heating and cooling energy demand for buildings within the Urban Heat Island: Case-study of London. Solar Energy, 2010, 84, 2246-2255.	2.9	95
10	ETFE foil cushions in roofs and atria. Construction and Building Materials, 2001, 15, 323-327.	3.2	93
11	The comfort, energy and health implications of London's urban heat island. Building Services Engineering Research and Technology, 2011, 32, 35-52.	0.9	93
12	Coupled TRNSYS-CFD simulations evaluating the performance of PCM plate heat exchangers in an airport terminal building displacement conditioning system. Building and Environment, 2013, 65, 132-145.	3.0	79
13	The London Heat Island: results from summertime monitoring. Building Services Engineering Research and Technology, 2002, 23, 97-106.	0.9	76
14	Urban heat island characteristics in London during winter. Solar Energy, 2009, 83, 1668-1682.	2.9	76
15	Resilient cooling strategies – A critical review and qualitative assessment. Energy and Buildings, 2021, 251, 111312.	3.1	68
16	Cool roofs: High tech low cost solution for energy efficiency and thermal comfort in low rise low income houses in high solar radiation countries. Energy and Buildings, 2018, 176, 58-70.	3.1	62
17	A method for energy classification of hotels: A case-study of Greece. Energy and Buildings, 2012, 55, 553-562.	3.1	55
18	The balance of the annual heating and cooling demand within the London urban heat island. Building Services Engineering Research and Technology, 2002, 23, 207-213.	0.9	52

MARIA KOLOKOTRONI

#	Article	IF	CITATIONS
19	Environmental sustainability of renewable hydrogen in comparison with conventional cooking fuels. Journal of Cleaner Production, 2018, 196, 863-879.	4.6	48
20	Built form, urban climate and building energy modelling: case-studies in Rome and Antofagasta. Journal of Building Performance Simulation, 2020, 13, 209-225.	1.0	47
21	Building communities: reducing energy use in tenanted commercial property. Building Research and Information, 2012, 40, 461-472.	2.0	46
22	Frozen food retail: Measuring and modelling energy use and space environmental systems in an operational supermarket. Energy and Buildings, 2017, 144, 129-143.	3.1	41
23	Alternative energy technologies in buildings: Stakeholder perceptions. Renewable Energy, 2007, 32, 2320-2333.	4.3	39
24	Space heating demand and heatwave vulnerability: London domestic stock. Building Research and Information, 2009, 37, 583-597.	2.0	36
25	Improved simulation of phase change processes in applications where conduction is the dominant heat transfer mode. Energy and Buildings, 2012, 47, 353-359.	3.1	35
26	Heating and cooling degree day prediction within the London urban heat island area. Building Services Engineering Research and Technology, 2009, 30, 183-202.	0.9	33
27	Impact of reflective materials on urban canyon albedo, outdoor and indoor microclimates. Building and Environment, 2022, 207, 108459.	3.0	32
28	An investigation of passive ventilation cooling and control strategies for an educational building. Applied Thermal Engineering, 2001, 21, 183-199.	3.0	31
29	A field study of wind dominant single sided ventilation through a narrow slotted architectural louvre system. Energy and Buildings, 2017, 138, 733-747.	3.1	29
30	Environmental impact of cool roof paint: case-study of house retrofit in two hot islands. Energy and Buildings, 2020, 217, 110007.	3.1	28
31	Energy demand and reduction opportunities in the UK food chain. Proceedings of Institution of Civil Engineers: Energy, 2014, 167, 162-170.	0.5	25
32	Solar hydrogen system for cooking applications: Experimental andÂnumerical study. Renewable Energy, 2015, 83, 717-728.	4.3	25
33	Using localised weather files to assess overheating in naturally ventilated offices within London's urban heat island. Building Services Engineering Research and Technology, 2012, 33, 351-369.	0.9	23
34	Dynamic thermal CFD simulation of a typical office by efficient transient solution methods. Building and Environment, 2005, 40, 887-896.	3.0	22
35	Comparative analysis on the energy use and environmental impact of different refrigeration systems for frozen food supermarket application. Energy Procedia, 2017, 123, 121-130.	1.8	22
36	Environmental impact analysis for typical office facades. Building Research and Information, 2004, 32, 2-16.	2.0	18

MARIA KOLOKOTRONI

#	Article	IF	CITATIONS
37	The potential to generate solar hydrogen for cooking applications: Case studies of Ghana, Jamaica and Indonesia. Renewable Energy, 2016, 95, 495-509.	4.3	17
38	Evaluating the indoor thermal resilience of ventilative cooling in non-residential low energy buildings: A review. Building and Environment, 2022, 222, 109376.	3.0	17
39	Building envelope design for climate change mitigation: a case study of hotels in Greece. International Journal of Sustainable Energy, 2016, 35, 944-967.	1.3	15
40	Coupling night ventilative and active cooling to reduce energy use in supermarkets with high refrigeration loads. Energy and Buildings, 2018, 171, 26-39.	3.1	14
41	System approach to the energy analysis of complex buildings. Energy and Buildings, 2005, 37, 930-938.	3.1	13
42	Supermarket Energy Use in the UK. Energy Procedia, 2019, 161, 325-332.	1.8	12
43	Guidelines for bioclimatic housing design in Greece. Building and Environment, 1990, 25, 297-307.	3.0	11
44	Energy aspects and ventilation of food retail buildings. Advances in Building Energy Research, 2015, 9, 1-19.	1.1	11
45	Cool and Green Roofs for Storage Buildings in Various Climates. Procedia Engineering, 2016, 169, 350-358.	1.2	11
46	Windcatchers in Modern UK Buildings: Experimental Study. International Journal of Ventilation, 2004, 3, 67-78.	0.2	9
47	Analysis of operational performance of a mechanical ventilation cooling system with latent thermal energy storage. Energy and Buildings, 2018, 159, 529-541.	3.1	9
48	Night cooling and ventilation design for office-type buildings. Renewable Energy, 1996, 8, 259-263.	4.3	8
49	Transient Solution Methods for Dynamic Thermal Modelling within CFD. International Journal of Ventilation, 2002, 1, 141-156.	0.2	7
50	A data-driven approach for electricity load profile prediction of new supermarkets. Energy Procedia, 2019, 161, 242-250.	1.8	7
51	Time-averaged Single Sided Ventilation Rates and Thermal Environment in Cooling Mode for a Low Energy Retrofit Envelope. International Journal of Ventilation, 2014, 13, 153-168.	0.2	5
52	The Social, Educational, and Market Scenario for nZEB in Europe. Buildings, 2018, 8, 51.	1.4	5
53	Environmental Impact of the High Concentrator Photovoltaic Thermal 2000x System. Sustainability, 2019, 11, 7213.	1.6	4
54	Integrating Active Thermal Mass Strategies with HVAC Systems: Dynamic Thermal Modelling. International Journal of Ventilation, 2009, 7, 345-367.	0.2	3

MARIA KOLOKOTRONI

#	Article	IF	CITATIONS
55	The impact of surface characteristics on ambient temperature at urban micro scale: comparative field study in two climates. International Journal of Low-Carbon Technologies, 2015, 10, 165-175.	1.2	3
56	Predicting electricity demand profiles of new supermarkets using machine learning. Energy and Buildings, 2021, 234, 110635.	3.1	3
57	Non Dimensional Analysis and Characterisation of Driving Forces for a Single Sided Slot Louvre Ventilation System. International Journal of Ventilation, 2016, 14, 335-348.	0.2	2
58	Comparison of operational performance and analytical model of high concentrator photovoltaic thermal system at 2000 concentration ratio. E3S Web of Conferences, 2019, 111, 06007.	0.2	2
59	Numerical Design and Laboratory Testing of Encapsulated PCM Panels for PCM-Air Heat Exchangers. Applied Sciences (Switzerland), 2021, 11, 676.	1.3	2
60	Moisture movement and extractor fans : Experimental study. Building Services Engineering Research and Technology, 1993, 14, 23-28.	0.9	1
61	Vent Discourse: Development of Educational Material on Energy Efficient Ventilation of Buildings. International Journal of Ventilation, 2007, 6, 61-67.	0.2	1
62	Energy-Efficient Envelope Design for Apartment Blocks—Case Study of A Residential Building in Spain. Applied Sciences (Switzerland), 2021, 11, 433.	1.3	1
63	Effectiveness of Extractor Fans in Reducing Airborne Moisture in Homes. Indoor Air, 1995, 5, 69-75.	2.0	0
64	Household Appliance Commitment with Appliance Dependency Modelling. , 2019, , .		0
65	Investigation on the Thermal Condition of a Traditional Cold-Lane in Summer in Subtropical Humid Climate Region of China. Energies, 2020, 13, 6602.	1.6	0
66	Comfort and Energy Implications of Urban Microclimate in High Latitudes. , 2021, , 79-104.		0
67	Ventilative Cooling in Combination with Passive Cooling: Thermal Masses and Phase-Change Materials (PCM). PoliTO Springer Series, 2021, , 141-165.	0.3	0