List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9325321/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Whole-body PET tracking of a d-dodecapeptide and its radiotheranostic potential for PD-L1 overexpressing tumors. Acta Pharmaceutica Sinica B, 2022, 12, 1363-1376.	5.7	11
2	How to strike a conformational balance in protein force fields for molecular dynamics simulations?. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2022, 12, e1578.	6.2	4
3	Critical Computational Evidence Regarding the Long-Standing Controversy over the Main Electrophilic Species in Hypochlorous Acid Solution. Molecules, 2022, 27, 1843.	1.7	2
4	Asymmetric Catalytic (2+1) Cycloaddition of Thioketones to Synthesize Tetrasubstituted Thiiranes. Angewandte Chemie - International Edition, 2022, 61, .	7.2	14
5	Rh-Catalyzed [4 + 2] Annulation with a Removable Monodentate Structure toward Iminopyranes and Pyranones by C–H Annulation. Organic Letters, 2022, 24, 3003-3008.	2.4	24
6	Frontispiece: Asymmetric Catalytic (2+1) Cycloaddition of Thioketones to Synthesize Tetrasubstituted Thiiranes. Angewandte Chemie - International Edition, 2022, 61, .	7.2	2
7	Frontispiz: Asymmetric Catalytic (2+1) Cycloaddition of Thioketones to Synthesize Tetrasubstituted Thiiranes. Angewandte Chemie, 2022, 134, .	1.6	0
8	Ruthenium atalyzed Geminal Hydroborative Cyclization of Enynes. Angewandte Chemie - International Edition, 2022, 61, .	7.2	16
9	Enantioselective Intermolecular Heck and Reductive Heck Reactions of Aryl Triflates, Mesylates, and Tosylates Catalyzed by Nickel. Angewandte Chemie - International Edition, 2021, 60, 2828-2832.	7.2	36
10	Enantioselective Intermolecular Heck and Reductive Heck Reactions of Aryl Triflates, Mesylates, and Tosylates Catalyzed by Nickel. Angewandte Chemie, 2021, 133, 2864-2868.	1.6	7
11	Catalytic Asymmetric Homologation of Ketones with α-Alkyl α-Diazo Esters. Journal of the American Chemical Society, 2021, 143, 2394-2402.	6.6	53
12	A Combined Computational and Experimental Study of Rh-Catalyzed C–H Silylation with Silacyclobutanes: Insights Leading to a More Efficient Catalyst System. Journal of the American Chemical Society, 2021, 143, 3571-3582.	6.6	52
13	Accurate Structure Prediction for Protein Loops Based on Molecular Dynamics Simulations with RSFF2C. Journal of Chemical Theory and Computation, 2021, 17, 4614-4628.	2.3	7
14	Enantioselective Formal Vinylogous N–H Insertion of Secondary Aliphatic Amines Catalyzed by a High-Spin Cobalt(II) Complex. Journal of the American Chemical Society, 2021, 143, 9648-9656.	6.6	41
15	Phosphate binding sites prediction in phosphorylation-dependent protein–protein interactions. Bioinformatics, 2021, 37, 4712-4718.	1.8	0
16	Iron-Catalyzed Enantioselective Radical Carboazidation and Diazidation of α,β-Unsaturated Carbonyl Compounds. Journal of the American Chemical Society, 2021, 143, 11856-11863.	6.6	50
17	A Bulky and Electron-Rich <i>N</i> -Heterocyclic Carbene–Palladium Complex (SIPr) ^{Ph₂} Pd(cin)Cl: Highly Efficient and Versatile for the Buchwald–Hartwig Amination of (Hetero)aryl Chlorides with (Hetero)aryl Amines at Room Temperature. ACS Catalysis, 2021_11_9252-9261	5.5	23
18	Precise Introduction of the â^'CH _{<i>n</i>} X _{3–<i>n</i>} (X = F, Cl, Br, I) Moiety to Target Molecules by a Radical Strategy: A Theoretical and Experimental Study. Journal of the American Chemical Society, 2021, 143, 13195-13204.	6.6	11

#	Article	IF	CITATIONS
19	Cobalt-Catalyzed 2-(1-Methylhydrazinyl)pyridine-Assisted C–H Alkylation/Annulation: Mechanistic Insights and Rapid Access to Cyclopenta[<i>c</i>]isoquinolinone Derivatives. Journal of Organic Chemistry, 2021, 86, 14915-14927.	1.7	4
20	Asymmetric Domino Heck Arylation and Alkylation of Nonconjugated Dienes: Double C–F···Sodium Attractive Noncovalent Interaction. Organic Letters, 2021, 23, 7064-7068.	2.4	7
21	Systematic investigation of the aza-Cope reaction for fluorescence imaging of formaldehyde <i>in vitro</i> and <i>in vivo</i> . Chemical Science, 2021, 12, 13857-13869.	3.7	22
22	Enantioselective Synthesis of Nitriles Containing a Quaternary Carbon Center by Michael Reactions of Silyl Ketene Imines with 1-Acrylpyrazoles. Journal of the American Chemical Society, 2021, 143, 19091-19098.	6.6	20
23	Multifunnel Energy Landscapes for Phosphorylated Translation Repressor 4E-BP2 and Its Mutants. Journal of Chemical Theory and Computation, 2020, 16, 800-810.	2.3	3
24	Ru-Catalyzed Geminal Hydroboration of Silyl Alkynes via a New <i>gem</i> -Addition Mechanism. Journal of the American Chemical Society, 2020, 142, 13867-13877.	6.6	46
25	Computational Study on the Fate of Oxidative Directing Groups in Ru(II), Rh(III), and Pd(II) Catalyzed C–H Functionalization. Journal of Organic Chemistry, 2020, 85, 12594-12602.	1.7	8
26	IDRMutPred: predicting disease-associated germline nonsynonymous single nucleotide variants (nsSNVs) in intrinsically disordered regions. Bioinformatics, 2020, 36, 4977-4983.	1.8	5
27	Hybrid Palladium Catalyst Assembled from Chiral Phosphoric Acid and Thioamide for Enantioselective β (sp 3)â^'H Arylation. Angewandte Chemie, 2020, 132, 12874-12878.	1.6	13
28	Asymmetric Reductive and Alkynylative Heck Bicyclization of Enynes to Access Conformationally Restricted Aza[3.1.0]bicycles. Angewandte Chemie, 2020, 132, 10906-10910.	1.6	8
29	Asymmetric Reductive and Alkynylative Heck Bicyclization of Enynes to Access Conformationally Restricted Aza[3.1.0]bicycles. Angewandte Chemie - International Edition, 2020, 59, 10814-10818.	7.2	23
30	CRiSP: accurate structure prediction of disulfide-rich peptides with cystine-specific sequence alignment and machine learning. Bioinformatics, 2020, 36, 3385-3392.	1.8	3
31	Hybrid Palladium Catalyst Assembled from Chiral Phosphoric Acid and Thioamide for Enantioselective β (sp ³)â~H Arylation. Angewandte Chemie - International Edition, 2020, 59, 12774-12778.	7.2	39
32	Mechanistic understanding of catalysis by combining mass spectrometry and computation. Chemical Communications, 2019, 55, 12749-12764.	2.2	25
33	Ru-Catalyzed Migratory Geminal Semihydrogenation of Internal Alkynes to Terminal Olefins. Journal of the American Chemical Society, 2019, 141, 17441-17451.	6.6	38
34	Radical Reactivity, Catalysis, and Reaction Mechanism of Arylcopper(II) Compounds: The Missing Link in Organocopper Chemistry. Journal of the American Chemical Society, 2019, 141, 18341-18348.	6.6	24
35	Innenrücktitelbild: Assembling a Hybrid Pd Catalyst from a Chiral Anionic Co ^{III} Complex and Ligand for Asymmetric C(sp ³)–H Functionalization (Angew. Chem. 6/2019). Angewandte Chemie, 2019, 131, 1863-1863.	1.6	0
36	WDSPdb: an updated resource for WD40 proteins. Bioinformatics, 2019, 35, 4824-4826.	1.8	18

#	Article	IF	CITATIONS
37	Synthesis of Benzofurans and Benzoxazoles through a [3,3]-Sigmatropic Rearrangement: O–NHAc as a Multitasking Functional Group. Organic Process Research and Development, 2019, 23, 1646-1653.	1.3	12

Assembling a Hybrid Pd Catalyst from a Chiral Anionic Co III Complex and Ligand for Asymmetric C(sp 3) Tj ETQq0 Q 0 rgBT /Qverlock 10

39	A Missing Piece of the Mechanism in Metal-Catalyzed Hydrogenation: Co(â^'l)/Co(0)/Co(+l) Catalytic Cycle for Co(â^'l)-Catalyzed Hydrogenation. Organic Letters, 2019, 21, 360-364.	2.4	19
40	Enantioselective Addition of Cyclic Ketones to Unactivated Alkenes Enabled by Amine/Pd(II) Cooperative Catalysis. ACS Catalysis, 2019, 9, 791-797.	5.5	72
41	Assembling a Hybrid Pd Catalyst from a Chiral Anionic Co ^{III} Complex and Ligand for Asymmetric C(sp ³)–H Functionalization. Angewandte Chemie - International Edition, 2019, 58, 1803-1807.	7.2	73
42	Developments and Applications of Coil-Library-Based Residue-Specific Force Fields for Molecular Dynamics Simulations of Peptides and Proteins. Journal of Chemical Theory and Computation, 2019, 15, 2761-2773.	2.3	11
43	Significantly different contact patterns between Aβ40 and Aβ42 monomers involving the Nâ€ŧerminal region. Chemical Biology and Drug Design, 2019, 94, 1615-1625.	1.5	2
44	Mechanistic Study on Cu(II)-Catalyzed Oxidative Cross-Coupling Reaction between Arenes and Boronic Acids under Aerobic Conditions. Journal of the American Chemical Society, 2018, 140, 5579-5587.	6.6	52
45	Directing Effects on the Copper-Catalyzed Site-Selective Arylation of Indoles. Organic Letters, 2018, 20, 6502-6505.	2.4	26
46	Biophysical and structural characterization of the thermostable WD40 domain of a prokaryotic protein, Thermomonospora curvata PkwA. Scientific Reports, 2018, 8, 12965.	1.6	5
47	PPI network analyses of human WD40 protein family systematically reveal their tendency to assemble complexes and facilitate the complex predictions. BMC Systems Biology, 2018, 12, 41.	3.0	9
48	Universal Implementation of a Residue-Specific Force Field Based on CMAP Potentials and Free Energy Decomposition. Journal of Chemical Theory and Computation, 2018, 14, 4474-4486.	2.3	30
49	A Combined DFT/IM-MS Study on the Reaction Mechanism of Cationic Ru(II)-Catalyzed Hydroboration of Alkynes. ACS Catalysis, 2017, 7, 1361-1368.	5.5	56
50	Density Functional Theory Study of the Reaction between d0 Tungsten Alkylidyne Complexes and H2O: Addition versus Hydrolysis. Inorganic Chemistry, 2017, 56, 7111-7119.	1.9	8
51	Prokaryotic and Highly-Repetitive WD40 Proteins: A Systematic Study. Scientific Reports, 2017, 7, 10585.	1.6	36
52	A Twist of the Twist Mechanism, 2-lodoxybenzoic Acid (IBX)-Mediated Oxidation of Alcohol Revisited: Theory and Experiment. Organic Letters, 2017, 19, 6502-6505.	2.4	35
53	Nickel-catalyzed asymmetric hydrogenation of β-acylamino nitroolefins: an efficient approach to chiral amines. Chemical Science, 2017, 8, 6419-6422.	3.7	82
54	Significantly Improved Protein Folding Thermodynamics Using a Dispersion-Corrected Water Model and a New Residue-Specific Force Field. Journal of Physical Chemistry Letters, 2017, 8, 3199-3205.	2.1	33

#	Article	IF	CITATIONS
55	Mechanism of Phosphorylation-Induced Folding of 4E-BP2 Revealed by Molecular Dynamics Simulations. Journal of Chemical Theory and Computation, 2017, 13, 320-328.	2.3	16
56	Protein dynamics and structural waters in bromodomains. PLoS ONE, 2017, 12, e0186570.	1.1	17
57	An Inâ€ŧether Chiral Center Modulates the Helicity, Cell Permeability, and Target Binding Affinity of a Peptide. Angewandte Chemie, 2016, 128, 8145-8149.	1.6	19
58	Ligandâ€Assisted Palladium(II)/(IV) Oxidation for <i>sp</i> ³ CH Fluorination. Advanced Synthesis and Catalysis, 2016, 358, 1946-1957.	2.1	20
59	An Inâ€ŧether Chiral Center Modulates the Helicity, Cell Permeability, and Target Binding Affinity of a Peptide. Angewandte Chemie - International Edition, 2016, 55, 8013-8017.	7.2	111
60	Chiral Sulfoxide-Induced Single Turn Peptide α-Helicity. Scientific Reports, 2016, 6, 38573.	1.6	22
61	Ir-Catalyzed Regio- and Stereoselective Hydrosilylation of Internal Thioalkynes: A Combined Experimental and Computational Study. Journal of Organic Chemistry, 2016, 81, 6157-6164.	1.7	40
62	Accurate Structure Prediction and Conformational Analysis of Cyclic Peptides with Residue-Specific Force Fields. Journal of Physical Chemistry Letters, 2016, 7, 1805-1810.	2.1	50
63	Metal-Free Synthesis of 3-Arylquinolin-2-ones from Acrylic Amides via a Highly Regioselective 1,2-Aryl Migration: An Experimental and Computational Study. Journal of Organic Chemistry, 2016, 81, 4058-4065.	1.7	35
64	Computational Exploration of Rh ^{III} /Rh ^V and Rh ^{III} /Rh ^I Catalysis in Rhodium(III)-Catalyzed C–H Activation Reactions of <i>N</i> -Phenoxyacetamides with Alkynes. Journal of the American Chemical Society, 2016, 138, 6861-6868.	6.6	116
65	Mechanistic Study on Pd/Mono-N-protected Amino Acid Catalyzed Vinyl–Vinyl Coupling Reactions: Reactivity and <i>E</i> / <i>Z</i> Selectivity. Organic Letters, 2016, 18, 5240-5243.	2.4	22
66	Mechanism and Selectivity in the Pd-Catalyzed Difunctionalization of Isoprene. Journal of Organic Chemistry, 2016, 81, 7604-7611.	1.7	13
67	Intrinsically disordered regions stabilize the helical form of the C-terminal domain of RfaH: A molecular dynamics study. Bioorganic and Medicinal Chemistry, 2016, 24, 4970-4977.	1.4	19
68	Front Cover Picture: Ligand-Assisted Palladium(II)/(IV) Oxidation forsp3Cï٤¿H Fluorination (Adv. Synth.) Tj ETQd	0 0 0 gfgBT	/Overlock 10
69	Crosslinked Aspartic Acids as Helixâ€Nucleating Templates. Angewandte Chemie - International Edition, 2016, 55, 12088-12093.	7.2	62
70	Genome-wide Analysis of WD40 Protein Family in Human. Scientific Reports, 2016, 6, 39262.	1.6	43
71	New Mechanistic Insights on the Selectivity of Transition-Metal-Catalyzed Organic Reactions: The Role of Computational Chemistry. Accounts of Chemical Research, 2016, 49, 1302-1310.	7.6	100
72	Folding Simulations of an α-Helical Hairpin Motif αtα with Residue-Specific Force Fields. Journal of Physical Chemistry B, 2016, 120, 33-41.	1.2	14

#	Article	IF	CITATIONS
73	A diversity-oriented synthesis of bioactive benzanilides via a regioselective C(sp ²)–H hydroxylation strategy. Chemical Science, 2016, 7, 2229-2238.	3.7	74
74	Why does Togni's reagent I exist in the high-energy hypervalent iodine form? Re-evaluation of benziodoxole based hypervalent iodine reagents. Chemical Communications, 2016, 52, 5371-5374.	2.2	50
75	Mechanism of Ni-NHC Catalyzed Hydrogenolysis of Aryl Ethers: Roles of the Excess Base. ACS Catalysis, 2016, 6, 483-493.	5.5	76
76	A Combined IMâ€MS/DFT Study on [Pd(MPAA)]â€Catalyzed Enantioselective CH Activation: Relay of Chirality through a Rigid Framework. Chemistry - A European Journal, 2015, 21, 11180-11188.	1.7	94
77	WDSPdb: a database for WD40-repeat proteins. Nucleic Acids Research, 2015, 43, D339-D344.	6.5	68
78	Residue-Specific Force Field Based on Protein Coil Library. RSFF2: Modification of AMBER ff99SB. Journal of Physical Chemistry B, 2015, 119, 1035-1047.	1.2	92
79	Non-manifesting AHI1 truncations indicate localized loss-of-function tolerance in a severe Mendelian disease gene. Human Molecular Genetics, 2015, 24, 2594-2603.	1.4	32
80	Computational Organic Chemistry: Bridging Theory and Experiment in Establishing the Mechanisms of Chemical Reactions. Journal of the American Chemical Society, 2015, 137, 1706-1725.	6.6	271
81	Significant Refinement of Protein Structure Models Using a Residue-Specific Force Field. Journal of Chemical Theory and Computation, 2015, 11, 1949-1956.	2.3	23
82	Highly Regio―and Stereoselective Hydrosilylation of Internal Thioalkynes under Mild Conditions. Angewandte Chemie - International Edition, 2015, 54, 5632-5635.	7.2	77
83	Folding Thermodynamics and Mechanism of Five Trp-Cage Variants from Replica-Exchange MD Simulations with RSFF2 Force Field. Journal of Chemical Theory and Computation, 2015, 11, 5473-5480.	2.3	27
84	Palladium-Catalyzed <i>Meta</i> -Selective C–H Bond Activation with a Nitrile-Containing Template: Computational Study on Mechanism and Origins of Selectivity. Journal of the American Chemical Society, 2014, 136, 344-355.	6.6	317
85	Residue-Specific Force Field Based on the Protein Coil Library. RSFF1: Modification of OPLS-AA/L. Journal of Physical Chemistry B, 2014, 118, 6983-6998.	1.2	93
86	Palladium-catalyzed benzo[d]isoxazole synthesis by C–H activation/[4 + 1] annulation. Chemical Science, 2014, 5, 1574-1578.	3.7	67
87	Folding of Fourteen Small Proteins with a Residue-Specific Force Field and Replica-Exchange Molecular Dynamics. Journal of the American Chemical Society, 2014, 136, 9536-9539.	6.6	66
88	Role of <i>N</i> -Acyl Amino Acid Ligands in Pd(II)-Catalyzed Remote C–H Activation of Tethered Arenes. Journal of the American Chemical Society, 2014, 136, 894-897.	6.6	263
89	Computational Studies on the Mechanism of the Copperâ€Catalyzed sp ³ â€CH Crossâ€Dehydrogenative Coupling Reaction. ChemPlusChem, 2013, 78, 943-951.	1.3	42
90	Ligand-Controlled Remarkable Regio- and Stereodivergence in Intermolecular Hydrosilylation of Internal Alkynes: Experimental and Theoretical Studies. Journal of the American Chemical Society, 2013, 135, 13835-13842.	6.6	135

#	Article	IF	CITATIONS
91	The intrinsic conformational features of amino acids from a protein coil library and their applications in force field development. Physical Chemistry Chemical Physics, 2013, 15, 3413.		55
92	Parameterization of PACE Force Field for Membrane Environment and Simulation of Helical Peptides and Helix–Helix Association. Journal of Chemical Theory and Computation, 2012, 8, 300-313.		61
93	Selfâ€Assembling Nanotubes Consisting of Rigid Cyclic γâ€Peptides. Advanced Functional Materials, 2012, 22, 3051-3056.		33
94	Structures and conformations of heteroatomâ€bridged calixarenes. Journal of Physical Organic Chemistry, 2011, 24, 1157-1165.		17
95	Thermal Activation of Methane and Ethene by Bare MO ^{.+} (M=Ge, Sn, and Pb): A Combined Theoretical/Experimental Study. Chemistry - A European Journal, 2011, 17, 9619-9625.		45
96	A novel self-promoted Morita-Baylis-Hillman-like dimerization. Science Bulletin, 2010, 55, 2794-2798.		3
97	Influence of Side Chain Conformations on Local Conformational Features of Amino Acids and Implication for Force Field Development. Journal of Physical Chemistry B, 2010, 114, 5840-5850.	1.2	44
98	PACE Force Field for Protein Simulations. 2. Folding Simulations of Peptides. Journal of Chemical Theory and Computation, 2010, 6, 3390-3402.		51
99	PACE Force Field for Protein Simulations. 1. Full Parameterization of Version 1 and Verification. Journal of Chemical Theory and Computation, 2010, 6, 3373-3389.	2.3	89
100	Reactivities of d0 transition metal complexes toward oxygen: Synthetic and mechanistic studies. Science in China Series B: Chemistry, 2009, 52, 1723-1733.	0.8	17
101	Theoretical Analysis of Secondary Structures of β-Peptides. Accounts of Chemical Research, 2008, 41, 1418-1427.	7.6	113
102	Toward a Coarse-Grained Protein Model Coupled with a Coarse-Grained Solvent Model: Solvation Free Energies of Amino Acid Side Chains. Journal of Chemical Theory and Computation, 2008, 4, 1891-1901.	2.3	39
103	Coarse-Grained Protein Model Coupled with a Coarse-Grained Water Model:  Molecular Dynamics Study of Polyalanine-Based Peptides. Journal of Chemical Theory and Computation, 2007, 3, 2146-2161.	2.3	42
104	A THEORETICAL COMPARISON OF CONFORMATIONAL FEATURES OF CALIX[4]AROMATICS. Journal of Theoretical and Computational Chemistry, 2004, 03, 51-68.	1.8	6
105	Theoretical study of the secondary structures of unionized Poly(γ-D-glutamic acid). Molecular Physics, 2004, 102, 2491-2498.	0.8	1
106	Effects of Aromatic Substitutions on the Photoreactions in Mg•+(C6HnF2X4-n) (X = F, CH3) Complexes:Â Formation and Decomposition of Benzyne Radical Cations. Journal of Physical Chemistry A, 2004, 108, 3356-3366.	1.1	8
107	A Theoretical Study on the Mechanism, Regiochemistry, and Stereochemistry of Hydrosilylation Catalyzed by Cationic Ruthenium Complexes. Journal of the American Chemical Society, 2003, 125, 11578-11582.	6.6	156
108	Theoretical Study of -Peptide Models: Intrinsic Preferences of Helical Structures. Helvetica Chimica Acta, 2002, 85, 3144-3160.	1.0	43

#	Article	IF	CITATIONS
109	Conformational Features and Anion-Binding Properties of Calix[4]pyrrole:Â A Theoretical Study. Journal of Organic Chemistry, 2001, 66, 3739-3746.	1.7	97
110	A Theoretical Study on the Mechanism and Diastereoselectivity of the Kulinkovich Hydroxycyclopropanation Reaction. Journal of the American Chemical Society, 2001, 123, 5777-5786.	6.6	61
111	Synthesis and Characterization of Chiral Nâ^'O Turns Induced by α-Aminoxy Acids. Journal of Organic Chemistry, 2001, 66, 7303-7312.	1.7	78
112	Reactions of dO alkylidene and amide complexes with silanes. Pure and Applied Chemistry, 2001, 73, 331-335.	0.9	10
113	Theoretical Study Of β ^{2,3} â€Peptide Models. Journal of the Chinese Chemical Society, 2000, 47, 129-134.	0.8	13
114	Theoretical Study of the Mechanism and Stereochemistry of Molybdenum Alkylidene Catalyzed Ring-Opening Metathesis Polymerization. ACS Symposium Series, 1999, , 187-197.	0.5	3
115	Isoporphycene: The Fourth Constitutional Isomer of Porphyrin with an N4 Core—Occurrence ofE/Z Isomerism. Angewandte Chemie - International Edition, 1999, 38, 2919-2923.	7.2	38
116	Novel Turns and Helices in Peptides of Chiral α-Aminoxy Acids. Journal of the American Chemical Society, 1999, 121, 589-590.	6.6	115
117	Theoretical Studies on Alkene Addition to Molybdenum Alkylidenes. Journal of the American Chemical Society, 1997, 119, 8043-8049.	6.6	77
118	Contracted Porphyrins: Octaethylisocorrole. Angewandte Chemie International Edition in English, 1997, 36, 2612-2615.	4.4	36
119	A Density Functional Study of Substituent Effects on the Oâ^'H and Oâ^'CH3Bond Dissociation Energies in Phenol and Anisole. Journal of Organic Chemistry, 1996, 61, 7904-7910.	1.7	132
120	Theoretical Study of a Termolecular Mechanism for the Reaction of (Trimethylsilyl)thiazole with Carbonyl Compounds. Journal of Organic Chemistry, 1996, 61, 1922-1926.	1.7	13
121	Von Porphyrinâ€Isomeren zu octapyrrolischen Makrocyclen mit 8erâ€Konformation. Angewandte Chemie, 1995, 107, 2705-2709.	1.6	71
122	Octaphyrinâ€ (1.0.1.0.1.0.1.0). Angewandte Chemie, 1995, 107, 2709-2711.	1.6	52
123	From Porphyrin Isomers to Octapyrrolic"Figure Eight―Macrocycles. Angewandte Chemie International Edition in English, 1995, 34, 2511-2514.	4.4	168
124	Octaphyrin-(1.0.1.0.1.0.1.0). Angewandte Chemie International Edition in English, 1995, 34, 2515-2517.	4.4	110
125	Total synthesis of monoterpenoid indole alkaloid (–)-arbophyllidine. Organic Chemistry Frontiers, 0, ,	2.3	0
126	Asymmetric Catalytic (2+1) Cycloaddition of Thioketones to Synthesize Tetrasubstituted Thiiranes. Angewandte Chemie, 0, , .	1.6	2

#	Article	IF	CITATIONS	
127	Ruthenium atalyzed Geminal Hydroborative Cyclization of Enynes. Angewandte Chemie, 0, , .	1.6	2	