Robert J Wilson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9325305/publications.pdf

Version: 2024-02-01

79 papers 8,250 citations

94433 37 h-index 76900 74 g-index

82 all docs 82 docs citations

times ranked

82

11095 citing authors

#	Article	IF	CITATIONS
1	Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography, 2007, 30, 609-628.	4.5	2,522
2	Ecological and evolutionary processes at expanding range margins. Nature, 2001, 411, 577-581.	27.8	765
3	Changes to the elevational limits and extent of species ranges associated with climate change. Ecology Letters, 2005, 8, 1138-1146.	6.4	544
4	An elevational shift in butterfly species richness and composition accompanying recent climate change. Global Change Biology, 2007, 13, 1873-1887.	9.5	273
5	Recent ecological responses to climate change support predictions of high extinction risk. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12337-12342.	7.1	264
6	Extinction risk from climate change is reduced by microclimatic buffering. Nature Climate Change, 2018, 8, 713-717.	18.8	245
7	Spatial patterns in species distributions reveal biodiversity change. Nature, 2004, 432, 393-396.	27.8	214
8	Protected areas facilitate species' range expansions. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14063-14068.	7.1	185
9	Combining probabilities of occurrence with spatial reserve design. Journal of Applied Ecology, 2004, 41, 252-262.	4.0	175
10	Density-distribution relationships in British butterflies. I. The effect of mobility and spatial scale. Journal of Animal Ecology, 2001, 70, 410-425.	2.8	154
11	Changing habitat associations of a thermally constrained species, the silver-spotted skipper butterfly, in response to climate warming. Journal of Animal Ecology, 2006, 75, 247-256.	2.8	151
12	Bisphenol A causes reproductive toxicity, decreases <i>dnmt1</i> transcription, and reduces global DNA methylation in breeding zebrafish <i>(Danio rerio)</i> . Epigenetics, 2016, 11, 526-538.	2.7	149
13	Combined effects of climate and biotic interactions on the elevational range of a phytophagous insect. Journal of Animal Ecology, 2008, 77, 145-155.	2.8	141
14	Prevalence, thresholds and the performance of presence–absence models. Methods in Ecology and Evolution, 2014, 5, 54-64.	5.2	125
15	MINIMUM VIABLE METAPOPULATION SIZE, EXTINCTION DEBT, AND THE CONSERVATION OF A DECLINING SPECIES., 2007, 17, 1460-1473.		109
16	Climate change impacts and adaptive strategies: lessons from the grapevine. Global Change Biology, 2016, 22, 3814-3828.	9.5	109
17	Microclimates buffer the responses of plant communities to climate change. Global Ecology and Biogeography, 2015, 24, 1340-1350.	5.8	105
18	Habitat-based statistical models for predicting the spatial distribution of butterflies and day-flying moths in a fragmented landscape. Journal of Applied Ecology, 2000, 37, 60-72.	4.0	100

#	Article	IF	CITATIONS
19	Range expansion through fragmented landscapes under a variable climate. Ecology Letters, 2013, 16, 921-929.	6.4	100
20	Fineâ€scale climate change: modelling spatial variation in biologically meaningful rates of warming. Global Change Biology, 2017, 23, 256-268.	9.5	88
21	The re-expansion and improving status of the silver-spotted skipper butterfly (Hesperia comma) in Britain: a metapopulation success story. Biological Conservation, 2005, 124, 189-198.	4.1	85
22	Recent evidence for the climate change threat to Lepidoptera and other insects. Journal of Insect Conservation, 2011, 15, 259-268.	1.4	77
23	Effects of temperature and elevation on habitat use by a rare mountain butterfly: implications for species responses to climate change. Ecological Entomology, 2009, 34, 437-446.	2.2	74
24	Climate Change and Crop Exposure to Adverse Weather: Changes to Frost Risk and Grapevine Flowering Conditions. PLoS ONE, 2015, 10, e0141218.	2.5	70
25	Insect responses to global change offer signposts for biodiversity and conservation. Ecological Entomology, 2021, 46, 699-717.	2.2	63
26	The contributions of topoclimate and land cover to species distributions and abundance: fineâ€resolution tests for a mountain butterfly fauna. Global Ecology and Biogeography, 2010, 19, 159-173.	5.8	62
27	Modelling the effect of habitat fragmentation on range expansion in a butterfly. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 1421-1427.	2.6	61
28	Seeing the woods for the trees – when is microclimate important in species distribution models?. Global Change Biology, 2014, 20, 2699-2700.	9.5	57
29	Modelling the habitat use and distribution of the threatened Javan slow loris Nycticebus javanicus. Endangered Species Research, 2014, 23, 277-286.	2.4	57
30	Short–term studies underestimate 30-generation changes in a butterfly metapopulation. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 563-569.	2.6	53
31	The effectiveness of protected areas in the conservation of species with changing geographical ranges. Biological Journal of the Linnean Society, 2015, 115, 707-717.	1.6	53
32	Density-distribution relationships in British butterflies. II. An assessment of mechanisms. Journal of Animal Ecology, 2001, 70, 426-441.	2.8	52
33	Selection for discontinuous life-history traits along a continuous thermal gradient in the butterfly Aricia agestis. Ecological Entomology, 2005, 30, 613-619.	2.2	52
34	Insect population trends and the IUCN Red List process. Journal of Insect Conservation, 2019, 23, 269-278.	1.4	49
35	Linking habitat use to range expansion rates in fragmented landscapes: a metapopulation approach. Ecography, 2010, 33, 73-82.	4.5	48
36	Signals of Climate Change in Butterfly Communities in a Mediterranean Protected Area. PLoS ONE, 2014, 9, e87245.	2.5	46

#	Article	IF	CITATIONS
37	Topographic microclimates drive microhabitat associations at the range margin of a butterfly. Ecography, 2014, 37, 732-740.	4.5	44
38	Endemic butterflies on Grande Comore: habitat preferences and conservation priorities. Biological Conservation, 1998, 85, 113-121.	4.1	41
39	Old concepts, new challenges: adapting landscape-scale conservation to the twenty-first century. Biodiversity and Conservation, 2017, 26, 527-552.	2.6	41
40	Where within a geographical range do species survive best? A matter of scale. Insect Conservation and Diversity, 2008, 1, 2-8.	3.0	39
41	Elevational trends in butterfly phenology: implications for species responses to climate change. Ecological Entomology, 2012, 37, 134-144.	2.2	39
42	Longâ€term change and spatial variation in butterfly communities over an elevational gradient: driven by climate, buffered by habitat. Diversity and Distributions, 2015, 21, 950-961.	4.1	37
43	Intra―and interspecific variation in the responses of insect phenology to climate. Journal of Animal Ecology, 2021, 90, 248-259.	2.8	36
44	Local and landscape management of an expanding range margin under climate change. Journal of Applied Ecology, 2012, 49, 552-561.	4.0	34
45	Models of presence–absence estimate abundance as well as (or even better than) models of abundance: the case of the butterfly Parnassius apollo. Landscape Ecology, 2013, 28, 401-413.	4.2	33
46	Active Management of Protected Areas Enhances Metapopulation Expansion Under Climate Change. Conservation Letters, 2014, 7, 111-118.	5.7	33
47	Hypoxia Suppressed Copper Toxicity during Early Development in Zebrafish Embryos in a Process Mediated by the Activation of the HIF Signaling Pathway. Environmental Science & Echnology, 2016, 50, 4502-4512.	10.0	31
48	METAPOPULATIONS OF FOUR LEPIDOPTERAN HERBIVORES ON A SINGLE HOST PLANT,LOTUS CORNICULATUS. Ecology, 2001, 82, 1371-1386.	3.2	29
49	Metapopulations of Four Lepidopteran Herbivores on a Single Host Plant, Lotus corniculatus. Ecology, 2001, 82, 1371.	3.2	25
50	Fineâ€scale determinants of butterfly species richness and composition in a mountain region. Journal of Biogeography, 2010, 37, 1706-1720.	3.0	24
51	Consistent population declines but idiosyncratic range shifts in Alpine orchids under global change. Nature Communications, 2020, 11, 5835.	12.8	24
52	Linking interâ€annual variation in environment, phenology, and abundance for a montane butterfly community. Ecology, 2020, 101, e02906.	3.2	22
53	Microclimate affects landscape level persistence in the British Lepidoptera. Journal of Insect Conservation, 2015, 19, 237-253.	1.4	21
54	Population turnover, habitat use and microclimate at the contracting range margin of a butterfly. Journal of Insect Conservation, 2015, 19, 205-216.	1.4	17

#	Article	IF	Citations
55	Predicting changes in the abundance of African wetland birds by incorporating abundance–occupancy relationships into habitat association models. Diversity and Distributions, 2011, 17, 480-490.	4.1	15
56	A high-resolution model of soil and surface water conditions. Ecological Modelling, 2012, 237-238, 109-119.	2.5	15
57	Climate conditions and resource availability drive return elevational migrations in a single-brooded insect. Oecologia, 2014, 175, 861-873.	2.0	14
58	Butterfly communities track climatic variation over space but not time in the Iberian Peninsula. Insect Conservation and Diversity, 2021, 14, 647-660.	3.0	14
59	Subsistence use of papyrus is compatible with wetland bird conservation. Biological Conservation, 2016, 201, 414-422.	4.1	13
60	Who flies first? – habitatâ€specific phenological shifts of butterflies and orthopterans in the light of climate change: a case study from the southâ€east M editerranean. Ecological Entomology, 2015, 40, 562-574.	2.2	12
61	Predicting microscale shifts in the distribution of the butterfly <i>Plebejus argus</i> edge of its range. Ecography, 2015, 38, 998-1005.	4.5	12
62	Asymmetric constraints on limits to species ranges influence consumerâ€resource richness over an environmental gradient. Global Ecology and Biogeography, 2016, 25, 1477-1488.	5.8	12
63	Designing effective protected area networks for multiple species. Biological Conservation, 2021, 258, 109125.	4.1	12
64	Breeding system and spatial isolation from congeners strongly constrain seed set in an insect-pollinated apomictic tree: Sorbus subcuneata (Rosaceae). Scientific Reports, 2017, 7, 45122.	3.3	11
65	Opinions of citizen scientists on open access to UK butterfly and moth occurrence data. Biodiversity and Conservation, 2019, 28, 3321-3341.	2.6	11
66	Quantifying resistance and resilience to local extinction for conservation prioritization. Ecological Applications, 2019, 29, e01989.	3.8	10
67	Microclimate and resource quality determine resource use in a range-expanding herbivore. Biology Letters, 2021, 17, 20210175.	2.3	10
68	How are arthopod communities structured and why are they so diverse? Answers from Mediterranean mountains using hierarchical additive partitioning. Biodiversity and Conservation, 2017, 26, 1333-1351.	2.6	8
69	Butterfly phenology in Mediterranean mountains using spaceâ€forâ€time substitution. Ecology and Evolution, 2020, 10, 928-939.	1.9	7
70	Climate-driven variation in biotic interactions provides a narrow and variable window of opportunity for an insect herbivore at its ecological margin. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20210021.	4.0	6
71	Effects of Climate Change on the Elevational Limits of Species Ranges. , 2011, , 107-132.		5
72	Large-Scale Patterns of Distribution and Persistence at the Range Margins of a Butterfly. Ecology, 2002, 83, 3357.	3.2	5

#	Article	IF	CITATIONS
73	A meta-database of Holocene sediment cores for England. Vegetation History and Archaeobotany, 2015, 24, 743-747.	2.1	3
74	Conservation ecology of butterflies on Cyprus in the context of Natura 2000. Biodiversity and Conservation, 2019, 28, 1759-1782.	2.6	2
75	A reply to â€~A meta-database of Holocene sediment cores for England: missing data' (Tooley 2015). Vegetation History and Archaeobotany, 2015, 24, 753-754.	2.1	1
76	Butterflies reset the calendar. Nature Climate Change, 2011, 1, 101-102.	18.8	0
77	Quantifying Resistance and Resilience to Local Extinction to Identify Priority Sites for the Conservation of Papyrusâ€Endemic Birds. Bulletin of the Ecological Society of America, 2020, 101, e01638.	0.2	0
78	Recent evidence for the climate change threat to Lepidoptera and other insects., 2010,, 103-112.		0
79	Northern wildlife feels the heat. Nature Climate Change, 0, , .	18.8	0