Karl Rumbold

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9325243/publications.pdf

Version: 2024-02-01

41 papers 1,277 citations

471371 17 h-index 35 g-index

41 all docs

41 docs citations

41 times ranked

2002 citing authors

#	Article	IF	CITATIONS
1	Characterization and immobilization of Pycnoporus cinnabarinus carboxylic acid reductase, PcCAR2. Journal of Biotechnology, 2022, 345, 47-54.	1.9	7
2	Synthesis and application of cationised cellulose for removal of Cr(VI) from acid mine-drainage contaminated water. AAS Open Research, 2021, 4, 4.	1.5	7
3	Adaptive Gene Content and Allele Distribution Variations in the Wild and Domesticated Populations of Saccharomyces cerevisiae. Frontiers in Microbiology, 2021, 12, 631250.	1.5	14
4	Bioethanolic yeasts from dung beetles: tapping the potential of extremophilic yeasts for improvement of lignocellulolytic feedstock fermentation. Biotechnology for Biofuels, 2021, 14, 86.	6.2	14
5	Transcriptome and proteome of the corm, leaf and flower of Hypoxis hemerocallidea (African potato). PLoS ONE, 2021, 16, e0253741.	1.1	0
6	Identification and characterisation of a fluorinase from Actinopolyspora mzabensis. Protein Expression and Purification, 2020, 166, 105508.	0.6	17
7	Biodiesel's trash is a biorefineries' treasure: the use of "dirty―glycerol as an industrial fermentation substrate. World Journal of Microbiology and Biotechnology, 2020, 36, 2.	1.7	24
8	Functional characterisation of the transcriptome from leaf tissue of the fluoroacetate-producing plant, Dichapetalum cymosum, in response to mechanical wounding. Scientific Reports, 2020, 10, 20539.	1.6	7
9	Global Co-occurrence of Acid Mine Drainage and Organic Rich Industrial and Domestic Effluent: Biological sulfate reduction as a co-treatment-option. Journal of Water Process Engineering, 2020, 38, 101650.	2.6	21
10	High-throughput in-field bioprospecting for cyanogenic plants and hydroxynitrile lyases. Biocatalysis and Biotransformation, 2020, 38, 234-240.	1.1	3
11	Bioremediation of acid mine drainage using Fischer-Tropsch waste water as a feedstock for dissimilatory sulfate reduction. Journal of Water Process Engineering, 2020, 35, 101229.	2.6	5
12	The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): South African resilience and survival strategies. Malawi Medical Journal, 2020, 32, 239-243.	0.2	0
13	<i>Streptomyces albulus</i> yields Îμ-poly- <scp>l</scp> -lysine and other products from salt-contaminated glycerol waste. Journal of Industrial Microbiology and Biotechnology, 2018, 45, 1083-1090.	1.4	18
14	The availability of second generation feedstocks for the treatment of acid mine drainage and to improve South Africa's bio-based economy. Science of the Total Environment, 2018, 637-638, 132-136.	3.9	21
15	Enrichment of maize and triticale bran with recombinant Aspergillus tubingensis ferulic acid esterase. Journal of Food Science and Technology, 2017, 54, 778-785.	1.4	8
16	Cellulose degradation capabilities of dung beetle, Euoniticellus intermedius, larva gut consortia. African Journal of Biotechnology, 2016, 15, 315-319.	0.3	1
17	Evaluation of Physicochemical Properties of South African Cashew Apple Juice as a Biofuel Feedstock. Scientifica, 2015, 2015, 1-9.	0.6	14
18	A Systems Approach to Uncover the Effects of the PGPR Pseudomonas koreensis on the Level of Drought Stress Tolerance in Helianthus Annuus. Procedia Environmental Sciences, 2015, 29, 262-263.	1.3	10

#	Article	IF	Citations
19	The cellular response of Saccharomyces cerevisiae to multi-walled carbon nanotubes (MWCNTs). Journal of Saudi Chemical Society, 2015, 19, 147-154.	2.4	16
20	The response effect of pheochromocytoma (PC12) cell lines to oxidized multi-walled carbon nanotubes (<i>o</i> -MWCMTs). African Health Sciences, 2014, 13, 947.	0.3	5
21	Tools for metabolic engineering in <i>Streptomyces</i> . Bioengineered, 2014, 5, 293-299.	1.4	14
22	HCN production and hydroxynitrile lyase: a natural activity in plants and a renewed biotechnological interest. Biotechnology Letters, 2014, 36, 223-228.	1.1	17
23	Screening for hydroxynitrile lyase activity in non-commercialised plants. South African Journal of Botany, 2014, 93, 9-13.	1.2	7
24	Bioflocculant production by a consortium of Streptomyces and Cellulomonas species and media optimization via surface response model. Colloids and Surfaces B: Biointerfaces, 2014, 116, 257-264.	2.5	54
25	Overexpression of <i>Aspergillus tubingensis faeA</i> in protease-deficient <i>Aspergillus niger</i> enables ferulic acid production from plant material. Journal of Industrial Microbiology and Biotechnology, 2014, 41, 1027-1034.	1.4	8
26	Characterization and flocculation efficiency of a bioflocculant produced by a marine <i>Halobacillus</i> . Environmental Technology (United Kingdom), 2013, 34, 2671-2679.	1.2	28
27	Characterization of an Exopolymeric Flocculant Produced by a Brachybacterium sp Materials, 2013, 6, 1237-1254.	1.3	27
28	Draft Genome Sequence of Streptomyces albulus Strain CCRC 11814, an $\hat{l}\mu$ -Poly- $\langle scp \rangle l \langle scp \rangle$ -Lysine-Producing Actinomycete. Genome Announcements, 2013, 1, .	0.8	10
29	The Production of Bioethanol from Cashew Apple Juice by Batch Fermentation Using Saccharomyces cerevisiae Y2084 and Vin13., 2013, 2013, 1-11.		13
30	The Bioethanol Industry in Sub-Saharan Africa: History, Challenges, and Prospects. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-11.	3.0	39
31	Microbial utilization of crude glycerol for the production of value-added products. Journal of Industrial Microbiology and Biotechnology, 2012, 39, 217-226.	1.4	158
32	Microbial renewable feedstock utilization. Bioengineered Bugs, 2010, 1, 359-366.	2.0	21
33	Microbial production host selection for converting second-generation feedstocks into bioproducts. Microbial Cell Factories, 2009, 8, 64.	1.9	60
34	Directed evolution of the thermostable xylanase from Thermomyces lanuginosus. Journal of Biotechnology, 2007, 127, 348-354.	1.9	69
35	A novel screening assay for hydroxynitrile lyases suitable for high-throughput screening. Journal of Biotechnology, 2007, 129, 151-161.	1.9	31
36	Microbial metabolomics: past, present and future methodologies. Biotechnology Letters, 2007, 29, 1-16.	1.1	302

#	Article	IF	CITATION
37	Microbial Feruloyl Esterases. ACS Symposium Series, 2004, , 255-270.	0.5	1
38	Influence of Growth Substrate and Free Ferulic Acid on the Production of Feruloyl Esterase by Aureobasidium pullulans. ACS Symposium Series, 2003, , 246-254.	0.5	1
39	Purification and Properties of a Feruloyl Esterase Involved in Lignocellulose Degradation by Aureobasidium pullulans. Applied and Environmental Microbiology, 2003, 69, 5622-5626.	1.4	61
40	Monitoring on-line desalted lignocellulosic hydrolysates by microdialysis sampling micro-high performance anion exchange chromatography with integrated pulsed electrochemical detection/mass spectrometry. Biotechnology and Bioengineering, 2002, 78, 822-828.	1.7	18
41	High-Level Intracellular Expression of Hydroxynitrile Lyase from the Tropical Rubber TreeHevea brasiliensisin Microbial Hosts. Protein Expression and Purification, 1997, 11, 61-71.	0.6	126