Guo-Ping Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9324915/publications.pdf

Version: 2024-02-01

94433 175258 3,618 106 37 52 citations h-index g-index papers 127 127 127 3549 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Direct Trifluoromethylthiolation and Perfluoroalkylthiolation of C(sp ²)H Bonds with CF ₃ SO ₂ Na and R _f SO ₂ Na. Angewandte Chemie - International Edition, 2015, 54, 14965-14969.	13.8	164
2	An Odorless, Oneâ€Pot Synthesis of Thioesters from Organic Halides, Thiourea and Benzoyl Chlorides in Water. Advanced Synthesis and Catalysis, 2013, 355, 1271-1276.	4.3	114
3	Odorless, One-Pot Regio- and Stereoselective Iodothiolation of Alkynes with Sodium Arenesulfinates under Metal-Free Conditions in Water. Organic Letters, 2015, 17, 3310-3313.	4.6	87
4	Facile and selective hydrogenolysis of β-O-4 linkages in lignin catalyzed by Pd–Ni bimetallic nanoparticles supported on ZrO ₂ . Green Chemistry, 2016, 18, 6229-6235.	9.0	85
5	Self-hydrogen transfer hydrogenolysis of β-O-4 linkages in lignin catalyzed by MIL-100(Fe) supported Pd–Ni BMNPs. Green Chemistry, 2017, 19, 4538-4543.	9.0	76
6	Elucidating the sources of activity and stability of FeP electrocatalyst for hydrogen evolution reactions in acidic and alkaline media. Applied Catalysis B: Environmental, 2020, 260, 118156.	20.2	74
7	Stille couplings in water at room temperature. Green Chemistry, 2013, 15, 105-109.	9.0	72
8	Decarboxylative and Denitrative Trifluoromethylation for the Synthesis of $C \in \mathbb{R}$ Compounds with Togni (II) Reagent. Advanced Synthesis and Catalysis, 2015, 357, 3447-3452.	4.3	70
9	Synthesis of <i>N</i> â€Heterocycles via Oxidantâ€Free Dehydrocyclization of Alcohols Using Heterogeneous Catalysts. Angewandte Chemie - International Edition, 2021, 60, 25188-25202.	13.8	70
10	Ligand Effects on the Stereochemical Outcome of Suzuki–Miyaura Couplings. Journal of Organic Chemistry, 2012, 77, 3700-3703.	3.2	69
11	Transition-metal-free electrophilic trifluoromethylthiolation with sodium trifluoromethanesulfinate at room temperature. Organic Chemistry Frontiers, 2017, 4, 266-270.	4.5	68
12	A Route to α-Fluoroalkyl Sulfides from α-Fluorodiaroylmethanes. Organic Letters, 2016, 18, 592-595.	4.6	66
13	Synthesis of a ZIF-derived hollow yolk–shell Co@CN catalyst for the oxidative esterification of 5-hydroxymethylfurfural. Green Chemistry, 2019, 21, 1602-1608.	9.0	65
14	Enhanced catalytic activity of cobalt nanoparticles encapsulated with an N-doped porous carbon shell derived from hollow ZIF-8 for efficient synthesis of nitriles from primary alcohols in water. Green Chemistry, 2019, 21, 4334-4340.	9.0	61
15	Iron single-atom anchored N-doped carbon as a †laccase-like' nanozyme for the degradation and detection of phenolic pollutants and adrenaline. Journal of Hazardous Materials, 2022, 425, 127763.	12.4	60
16	Odorless, Regioselective Synthesis of Diaryl Sulfides and αâ€Thioaryl Carbonyls from Sodium Arylsulfinates <i>via</i> a Metal†Free Radical Strategy in Water. Advanced Synthesis and Catalysis, 2016, 358, 4100-4105.	4.3	59
17	Acid/Phosphide-Induced Radical Route to Alkyl and Alkenyl Sulfides and Phosphonothioates from Sodium Arylsulfinates in Water. Journal of Organic Chemistry, 2017, 82, 382-389.	3.2	57
18	Recent advances in synthesis of organosilicons via radical strategies. Chinese Chemical Letters, 2021, 32, 1280-1292.	9.0	56

#	Article	IF	Citations
19	One-Pot, Catalyst-Free Synthesis of Spiro[dihydroquinoline-naphthofuranone] Compounds from Isatins in Water Triggered by Hydrogen Bonding Effects. ACS Sustainable Chemistry and Engineering, 2017, 5, 3465-3470.	6.7	55
20	Oxidative trifluoromethylation and fluoroolefination of unactivated olefins. Chemical Communications, 2016, 52, 13668-13670.	4.1	54
21	Iridium-catalyzed methylation of indoles and pyrroles using methanol as feedstock. RSC Advances, 2015, 5, 70329-70332.	3.6	53
22	Visible-light-initiated difluoromethylation of arene diazonium tetrafluoroborates. Chemical Communications, 2016, 52, 5965-5968.	4.1	53
23	Diâ€ <i>tert</i> â€butyl Peroxide (DTBP)â€Mediated Oxidative Cross―Coupling of Isochroman and Indole Derivatives. Advanced Synthesis and Catalysis, 2015, 357, 2105-2110.	4.3	52
24	Efficient iron single-atom catalysts for selective ammoxidation of alcohols to nitriles. Nature Communications, 2022, 13, 1848.	12.8	52
25	Merging visible-light photoredox and micellar catalysis: arylation reactions with anilines nitrosated <i>in situ</i> . Catalysis Science and Technology, 2018, 8, 3728-3732.	4.1	49
26	Metal-free oxidative phosphinylation of aryl alkynes to \hat{l}^2 -ketophosphine oxides via visible-light photoredox catalysis. Catalysis Science and Technology, 2016, 6, 413-416.	4.1	47
27	Silver-catalyzed fluoroalkylation of thiols using fluoroalkanesulfinates. Journal of Fluorine Chemistry, 2017, 193, 113-117.	1.7	47
28	The synergistic catalysis on Co nanoparticles and CoNx sites of aniline-modified ZIF derived Co@NCs for oxidative esterification of HMF. Chinese Chemical Letters, 2021, 32, 685-690.	9.0	47
29	Pd-Ni bimetallic nanoparticles supported on active carbon as an efficient catalyst for hydrodeoxygenation of aldehydes. Applied Catalysis A: General, 2019, 569, 190-195.	4.3	44
30	Copper-catalyzed 8-amido chelation-induced regioselective Câ€"H fluoroalkylation of quinolines. Organic Chemistry Frontiers, 2016, 3, 1309-1313.	4.5	43
31	Facile aromatic nucleophilic substitution (S _N Ar) reactions in ionic liquids: an electrophile–nucleophile dual activation by [Omim]Br for the reaction. Green Chemistry, 2016, 18, 5580-5585.	9.0	43
32	Facile Sulfa-Michael Reactions with Sodium Arylsulfinates in Water: The Promotion of Water on the Reaction. ACS Sustainable Chemistry and Engineering, 2016, 4, 1804-1809.	6.7	43
33	Regio- and stereoselective hydrosilylation of alkynes catalyzed by SiO ₂ supported Pd–Cu bimetallic nanoparticles. Green Chemistry, 2017, 19, 2535-2540.	9.0	43
34	Iridium-catalyzed transfer hydrogenation of nitroarenes to anilines. New Journal of Chemistry, 2015, 39, 5360-5365.	2.8	41
35	Chemoselective transfer hydrogenation of nitroarenes by highly dispersed Ni-Co BMNPs. Catalysis Communications, 2016, 84, 25-29.	3.3	41
36	A base-controlled chemoselective transfer hydrogenation of $\hat{l}\pm,\hat{l}^2$ -unsaturated ketones catalyzed by [IrCp*Cl ₂] ₂ with 2-propanol. RSC Advances, 2015, 5, 13208-13211.	3.6	39

#	Article	IF	Citations
37	Trifluoromethylation of thiophenols and thiols with sodium trifluoromethanesulfinate and iodine pentoxide. Catalysis Science and Technology, 2016, 6, 417-421.	4.1	39
38	Single-atomic-site iron on N-doped carbon for chemoselective reduction of nitroarenes. Nano Research, 2022, 15, 603-611.	10.4	39
39	Metal-free electrophilic phosphination of electron-rich arenes, arenols and aromatic thiols with diarylphosphine oxides. Organic and Biomolecular Chemistry, 2018, 16, 30-33.	2.8	37
40	Ru@UiO-66(Ce) catalyzed acceptorless dehydrogenation of primary amines to nitriles: the roles of Lewis acidâ \in "base pairs in the reaction. Green Chemistry, 2019, 21, 5386-5393.	9.0	37
41	An efficient synthesis of dihydrothiophene ureidoformamides by domino reactions of 1,3-thiazolidinedione under catalyst-free conditions. Green Chemistry, 2011, 13, 998.	9.0	35
42	Facile Synthesis of Indolizines via 1,3-Dipolar Cycloadditions in [Omim]Br: The Promotion of the Reaction through Noncovalent Interactions. ACS Sustainable Chemistry and Engineering, 2017, 5, 9279-9285.	6.7	35
43	Cobalt Nanoparticles Embedded in <i>N</i> àâ€Doped Porous Carbon Derived from Bimetallic Zeolitic Imidazolate Frameworks for Oneâ€Pot Selective Oxidative Depolymerization of Lignin. ChemCatChem, 2019, 11, 1264-1271.	3.7	35
44	A Fe single atom on N,S-doped carbon catalyst for performing N-alkylation of aromatic amines under solvent-free conditions. Journal of Materials Chemistry A, 2021, 9, 25128-25135.	10.3	34
45	Acid-induced chemoselective arylthiolations of electron-rich arenes in ionic liquids from sodium arylsulfinates: the reducibility of halide anions in [Hmim]Br. Organic and Biomolecular Chemistry, 2017, 15, 2804-2808.	2.8	33
46	ZIF-derived metal/N-doped porous carbon nanocomposites: efficient catalysts for organic transformations. Catalysis Science and Technology, 2022, 12, 2106-2121.	4.1	32
47	Radical Route to 1,4-Benzothiazine Derivatives from 2-Aminobenzenethiols and Ketones under Transition-Metal-Free Conditions. Organic Letters, 2016, 18, 6424-6427.	4.6	31
48	Reversible Dehydrogenation and Hydrogenation of Nâ€Heterocycles Catalyzed by Bimetallic Nanoparticles Encapsulated in MILâ€100(Fe). ChemCatChem, 2018, 10, 4966-4972.	3.7	31
49	Synthesis of an Fe–Pd bimetallic catalyst for <i>N</i> alkylation of amines with alcohols <i>via</i> hydrogen auto-transfer methodology. Green Chemistry, 2021, 23, 396-404.	9.0	30
50	An odorless thia-Michael addition using Bunte salts as thiol surrogates. RSC Advances, 2015, 5, 27107-27111.	3.6	29
51	Photocatalytic radical cyclization of \hat{l}_{\pm} -halo hydrazones with \hat{l}^2 -ketocarbonyls: facile access to substituted dihydropyrazoles. Chemical Communications, 2017, 53, 5342-5345.	4.1	29
52	A breathable and environmentally friendly superhydrophobic coating for anti-condensation applications. Chemical Engineering Journal, 2021, 412, 128725.	12.7	29
53	Stereoselective Synthesis of Alkenyl Silanes, Sulfones, Phosphine Oxides, and Nitroolefins by Radical C–S Bond Cleavage of Arylalkenyl Sulfides. Organic Letters, 2017, 19, 1100-1103.	4.6	28
54	Lignin-derived Zn single atom/N-codoped porous carbon for \hat{l} ±-alkylation of aromatic ketones with alcohols via borrowing hydrogen strategy. Nano Research, 2022, 15, 1874-1881.	10.4	28

#	Article	IF	CITATIONS
55	Cobalt–molybdenum synergistic catalysis for the hydrogenolysis of terephthalate-based polyesters. Green Chemistry, 2021, 23, 8666-8672.	9.0	28
56	An odorless, one-pot synthesis of nitroaryl thioethers via S $<$ sub $>$ N $<$ /sub $>$ Ar reactions through the in situ generation of S-alkylisothiouronium salts. RSC Advances, 2014, 4, 59990-59996.	3.6	26
57	Ascorbic acid promoted $[4+2]$ benzannulation: a mild, operationally simple approach to the synthesis of phenanthrenes. Organic Chemistry Frontiers, 2016, 3, 630-634.	4.5	26
58	The ammoxidation of alcohols over heterogeneous catalysts for the green synthesis of nitriles. Organic Chemistry Frontiers, 2021, 8, 3137-3149.	4.5	26
59	Ligand effects on the stereochemistry of Stille couplings, as manifested in reactions of Z-alkenyl halides. Chemical Communications, 2012, 48, 8661.	4.1	25
60	Ascorbic Acid Promoted Metal-Free Synthesis of Aryl Sulfides with Anilines Nitrosated in Situ by tert-Butyl Nitrite. Synlett, 2015, 26, 1841-1846.	1.8	25
61	A facile, oneâ€pot, green synthesis of polysubstituted 4 <i>H</i> à€pyrans via piperidineâ€catalyzed threeâ€component condensation in aqueous medium. Journal of Heterocyclic Chemistry, 2011, 48, 124-128.	2.6	24
62	4-Cyanopyridine-catalyzed anti-Markovnikov selective hydroboration of alkenes. New Journal of Chemistry, 2018, 42, 16456-16459.	2.8	22
63	Electronic Structure Modulation and Phase Transformation of Nickel–Cobalt Carbonate Hydroxide Caused by Halogen Doping and Its Effect on Supercapacitor Performance. ACS Applied Energy Materials, 2022, 5, 469-480.	5.1	22
64	Catalytic oxidative dehydrogenation of N-heterocycles with nitrogen/phosphorus co-doped porous carbon materials. Chemical Science, 2022, 13, 6865-6872.	7.4	22
65	Porous cobalt@N-doped carbon derived from chitosan for oxidative esterification of 5-Hydroxymethylfurfural: The roles of zinc in the synthetic and catalytic process. Molecular Catalysis, 2020, 482, 110695.	2.0	21
66	Carbohydrate-derived porous carbon materials: An ideal platform for green organic synthesis. Chinese Chemical Letters, 2022, 33, 186-196.	9.0	21
67	An odorless and efficient synthesis of symmetrical thioethers using organic halides and thiourea in Triton X10 aqueous micelles. Green Chemistry Letters and Reviews, 2012, 5, 481-485.	4.7	20
68	"Allâ€Water―Synthesis of βâ€Amino α,αâ€Difluoro Ketones from Fluorinated Enol Silyl Ethers and Imines. European Journal of Organic Chemistry, 2017, 2017, 3438-3441.	2.4	20
69	Efficient visible-light-driven Suzuki coupling reaction over Co-doped BiOCl/Ce-doped Bi Bi ₂ O ₂ Co ₃ composites. Green Chemistry, 2021, 23, 1823-1833.	9.0	20
70	The selective hydrogenolysis of C–O bonds in lignin model compounds by Pd–Ni bimetallic nanoparticles in ionic liquids. Dalton Transactions, 2017, 46, 11884-11889.	3.3	19
71	Visible-light photoredox catalyzed cyclization of aryl alkynoates for the synthesis of trifluoromethylated coumarins. Catalysis Communications, 2018, 114, 70-74.	3.3	18
72	Palladiumâ€Catalyzed Odorless Oneâ€Pot Synthesis of Vinyl Sulfides from Organohalides, Thiourea, and Alkynes. Asian Journal of Organic Chemistry, 2014, 3, 77-81.	2.7	17

#	Article	IF	CITATIONS
73	Iridium-catalyzed regioselective decarboxylative allylation of \hat{l}^2 -ketoacids: efficient construction of \hat{l}^3 , \hat{l} -unsaturated ketones. Chemical Communications, 2015, 51, 11512-11514.	4.1	17
74	Modified cellulose with tunable surface hydrophilicity/hydrophobicity as a novel catalyst support for selective reduction of nitrobenzene. Catalysis Communications, 2020, 137, 105949.	3.3	17
75	A Oneâ€pot, Efficient Synthesis of Polyfunctionalized Pyrido[2,3â€∢i>d⟨li>]pyrimidines and Uncyclized Adducts by Aldehydes, 1,3â€Dicarbonyl Compounds, and 6â€Aminouracils. Journal of Heterocyclic Chemistry, 2014, 51, 1595-1602.	2.6	16
76	pH-Responsive Behavior of Pickering Emulsions Stabilized by a Selenium-Containing Surfactant and Alumina Nanoparticles. Langmuir, 2021, 37, 10683-10691.	3.5	16
77	Palladium nanoparticles stabilized by aqueous vesicles self-assembled from a PEGylated surfactant ionic liquid for the chemoselective reduction of nitroarenes. Catalysis Communications, 2017, 99, 57-60.	3.3	15
78	Catalytically Active Sites on Ni5P4 for Efficient Hydrogen Evolution Reaction From Atomic Scale Calculation. Frontiers in Chemistry, 2019, 7, 444.	3.6	15
79	The selective hydrogenation of nitroarenes and alkenes catalyzed by Pd@MOFs: The role of electronic interactions between Pd nanoparticles and MOFs on the reaction. Molecular Catalysis, 2020, 495, 111157.	2.0	15
80	Hf-MOF catalyzed Meerweinâ^'Ponndorfâ^'Verley (MPV) reduction reaction: Insight into reaction mechanism. Molecular Catalysis, 2021, 502, 111405.	2.0	15
81	Supported Pd–Au bimetallic nanoparticles as an efficient catalyst for the hydrodeoxygenation of vanillin with formic acid at room temperature. Green Chemistry, 2022, 24, 1096-1102.	9.0	15
82	Catalystâ€Free Chemoselective Reduction of Nitroarenes Using Thiourea as a Hydrogen Source. Asian Journal of Organic Chemistry, 2015, 4, 141-144.	2.7	14
83	Effective hydrodeoxygenation of dibenzofuran by a bimetallic catalyst in water. New Journal of Chemistry, 2016, 40, 1605-1609.	2.8	14
84	Thiourea in the Construction of C–S Bonds as Part of an Undergraduate Organic Chemistry Laboratory Course. Journal of Chemical Education, 2017, 94, 244-247.	2.3	14
85	Efficient Synthesis of Isothiochromene Derivatives by Pdâ€Catalyzed Hydrothiolation Reaction. European Journal of Organic Chemistry, 2014, 2014, 5312-5317.	2.4	13
86	Direct synthesis of alkynylphosphonates from alkynes and phosphite esters catalyzed by Cu/Cu ₂ O nanoparticles supported on Nb ₂ O ₅ . New Journal of Chemistry, 2018, 42, 13957-13962.	2.8	12
87	Synthesis of Quinolines from Allylic Alcohols via Iridium-Catalyzed Tandem Isomerization/Cyclization Combined with Potassium Hydroxide. Synthesis, 2015, 47, 976-984.	2.3	11
88	An Efficient, One-Pot Synthesis of Spiro[Dihydropyridine-Oxindole] Compounds under Catalyst-Free Conditions. Journal of Chemical Research, 2011, 35, 547-551.	1.3	10
89	Palladium(II)-Catalyzed Oxidative ortho-Arylation of 2-Phenylpyridines. Synlett, 2013, 24, 2153-2159.	1.8	10
90	Iridium-Catalyzed C-3 Allylation of Indoles with Allylic Alcohols Promoted by a BrÃ,nsted Acid. Synthesis, 2014, 46, 1717-1724.	2.3	10

#	Article	IF	CITATIONS
91	Facile Approach for C(sp3)–H Bond Thioetherification of Isochroman. Synlett, 2015, 26, 915-920.	1.8	10
92	Fe-based metal-organic frameworks for the synthesis of N-arylsulfonamides via the reactions of sodium arylsulfinates or arylsulfonyl chlorides with nitroarenes in water. Tetrahedron Letters, 2018, 59, 4226-4230.	1.4	10
93	Palladium-Catalyzed Direct C-2 Arylation of Indoles with Aryl Halides in Aqueous Medium. Synlett, 2012, 23, 2992-2996.	1.8	8
94	A Highly Regioselective C-3 Benzylation Reaction of Indoles with Alcohols Catalysed by an N-Heterocyclic Carbene. Journal of Chemical Research, 2015, 39, 438-441.	1.3	8
95	A concerted addition mechanism in [Hmim]Br-triggered thiol–ene reactions: a typical "ionic liquid effect―revealed by DFT and experimental studies. New Journal of Chemistry, 2019, 43, 5752-5758.	2.8	8
96	Synthesis of <i>N</i> à€Heterocycles via Oxidantâ€Free Dehydrocyclization of Alcohols Using Heterogeneous Catalysts. Angewandte Chemie, 2021, 133, 25392-25406.	2.0	8
97	Deuterated N-difluoromethylthiophthalimide: A stable, scalable reagent for radical and electrophilic deuteriodifluoromethylthiolations. Chinese Chemical Letters, 2022, 33, 4293-4297.	9.0	8
98	Nâ€Heterocyclic Carbene atalyzed <i>α</i> â€Alkylation of Ketones with Primary Alcohols. Helvetica Chimica Acta, 2014, 97, 1666-1671.	1.6	7
99	Pdâ€Ni BMNPs Encapsulated in UiOâ€66 as an Efficient Catalyst for the Activation of "lnert―Câ^'O Bonds. ChemCatChem, 2018, 10, 4258-4263.	3.7	7
100	Synthesis of Quinazolinones Via a Tandem Hydrogen-Transfer Strategy Catalyzed by N,S Co-doped Carbon-Anchored Co Nanoparticles. ACS Sustainable Chemistry and Engineering, 2022, 10, 3872-3881.	6.7	7
101	Palladium-Catalyzed Cyanation of Aryl Bromides with Malononitrile via ÂCarbon–Nitrile Bond Cleavage Mediated by Copper. Synlett, 2014, 25, 547-550.	1.8	6
102	Transition-metal- and phosphorus-free electrophilic trifluoromethylthiolation of indoles with sodium trifluoromethanesulfinates in ionic liquids. Tetrahedron Letters, 2021, 70, 153015.	1.4	6
103	A Base-Induced Ring-Opening Process of 2-Substituted-1,3,4-Oxadiazoles for the Generation of Nitriles at Room Temperature. Journal of Chemical Research, 2014, 38, 371-374.	1.3	5
104	Ethyl cellulose derived porous iron@N-doped carbon material for N–H carbene insertion reaction. Tetrahedron, 2021, 98, 132432.	1.9	4
105	"All-water―synthesis of the gem-difluoromethylene azo compounds from Arenediazonium Salts and fluorinated enol silyl ethers. Journal of Fluorine Chemistry, 2018, 206, 125-127.	1.7	3
106	A DFT study on the mechanism of rhodium-catalyzed regioselective hydrothiolation of the allyl amine. Molecular Catalysis, 2019, 468, 62-74.	2.0	3