
Nicole Déglon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9324463/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thrombolysis by PLAT/tPA increases serum free IGF1 leading to a decrease of deleterious autophagy following brain ischemia. Autophagy, 2022, 18, 1297-1317.	9.1	14
2	Extracellular vesicles: Major actors of heterogeneity in tau spreading among human tauopathies. Molecular Therapy, 2022, 30, 782-797.	8.2	17
3	Maximizing lentiviral vector gene transfer in the CNS. Gene Therapy, 2021, 28, 75-88.	4.5	15
4	Mitochondrial biogenesis in developing astrocytes regulates astrocyte maturation and synapse formation. Cell Reports, 2021, 35, 108952.	6.4	55
5	Lactate transporters in the rat barrel cortex sustain whisker-dependent BOLD fMRI signal and behavioral performance. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	18
6	Dysfunction of homeostatic control of dopamine by astrocytes in the developing prefrontal cortex leads to cognitive impairments. Molecular Psychiatry, 2020, 25, 732-749.	7.9	71
7	The C-terminal domain of LRRK2 with the G2019S mutation is sufficient to produce neurodegeneration of dopaminergic neurons in vivo. Neurobiology of Disease, 2020, 134, 104614.	4.4	15
8	Genome Editing for CNS Disorders. Frontiers in Neuroscience, 2020, 14, 579062.	2.8	18
9	Tau accumulation in astrocytes of the dentate gyrus induces neuronal dysfunction and memory deficits in Alzheimer's disease. Nature Neuroscience, 2020, 23, 1567-1579.	14.8	121
10	Lentiviral mediated RPE65 gene transfer in healthy hiPSCs-derived retinal pigment epithelial cells markedly increased RPE65 mRNA, but modestly protein level. Scientific Reports, 2020, 10, 8890.	3.3	5
11	Efficacy of THN201, a Combination of Donepezil and Mefloquine, to Reverse Neurocognitive Deficits in Alzheimer's Disease. Frontiers in Neuroscience, 2020, 14, 563.	2.8	14
12	Glucose metabolism links astroglial mitochondria to cannabinoid effects. Nature, 2020, 583, 603-608.	27.8	169
13	Genetic and pharmacological inactivation of astroglial connexin 43 differentially influences the acute response of antidepressant and anxiolytic drugs. Acta Physiologica, 2020, 229, e13440.	3.8	24
14	Emerging technologies to study glial cells. Glia, 2020, 68, 1692-1728.	4.9	32
15	Development of Efficient AAV2/DJ-Based Viral Vectors to Selectively Downregulate the Expression of Neuronal or Astrocytic Target Proteins in the Rat Central Nervous System. Frontiers in Molecular Neuroscience, 2019, 12, 201.	2.9	13
16	P.2.10 Hippocampal Cx43 hemichannel inactivation protects from glutamatergic stress-related behaviour. European Neuropsychopharmacology, 2019, 29, S661-S662.	0.7	0
17	Cell-Type-Specific Gene Expression Profiling in Adult Mouse Brain Reveals Normal and Disease-State Signatures. Cell Reports, 2019, 26, 2477-2493.e9.	6.4	55
18	A New Tool for In Vivo Study of Astrocyte Connexin 43 in Brain. Scientific Reports, 2019, 9, 18292.	3.3	13

#	Article	IF	CITATIONS
19	Scalable Production of AAV Vectors in Orbitally Shaken HEK293 Cells. Molecular Therapy - Methods and Clinical Development, 2019, 13, 14-26.	4.1	45
20	Environment-dependent striatal gene expression in the BACHD rat model for Huntington disease. Scientific Reports, 2018, 8, 5803.	3.3	10
21	The striatal kinase DCLK3 produces neuroprotection against mutant huntingtin. Brain, 2018, 141, 1434-1454.	7.6	23
22	βAPP Processing Drives Gradual Tau Pathology in an Age-Dependent Amyloid Rat Model of Alzheimer's Disease. Cerebral Cortex, 2018, 28, 3976-3993.	2.9	13
23	I07â€Allele specific gene editing for huntington's disease mediated by the KAMICAS9 self-inactivating CRISPR/CAS9 system. , 2018, , .		0
24	Different tau species lead to heterogeneous tau pathology propagation and misfolding. Acta Neuropathologica Communications, 2018, 6, 132.	5.2	72
25	Scalable Production and Purification of Adeno-Associated Viral Vectors (AAV). Methods in Molecular Biology, 2018, 1850, 259-274.	0.9	3
26	Human Induced Pluripotent Stem Cell-Derived Astrocytes Are Differentially Activated by Multiple Sclerosis-Associated Cytokines. Stem Cell Reports, 2018, 11, 1199-1210.	4.8	114
27	CRISPR/Cas9-Mediated Genome Editing for Huntington's Disease. Methods in Molecular Biology, 2018, 1780, 463-481.	0.9	17
28	Huntingtin Aggregation Impairs Autophagy, Leading to Argonaute-2 Accumulation and Global MicroRNA Dysregulation. Cell Reports, 2018, 24, 1397-1406.	6.4	66
29	Therapeutic efficacy of regulable GDNF expression for Huntington's and Parkinson's disease by a high-induction, background-free "GeneSwitch―vector. Experimental Neurology, 2018, 309, 79-90.	4.1	21
30	B04â€Environment-dependent modulation of striatal gene expression in the BACHD RAT model. , 2018, , .		0
31	A40â€Modulation of DARPP32 homeostasis by htt protein in derivatives of disease-specific and control human pluripotent stem cells. , 2018, , .		0
32	Preclinical Evaluation of a Lentiviral Vector for Huntingtin Silencing. Molecular Therapy - Methods and Clinical Development, 2017, 5, 259-276.	4.1	13
33	Formation of hippocampal mHTT aggregates leads to impaired spatial memory, hippocampal activation and adult neurogenesis. Neurobiology of Disease, 2017, 102, 105-112.	4.4	8
34	The Self-Inactivating KamiCas9 System for the Editing of CNS Disease Genes. Cell Reports, 2017, 20, 2980-2991.	6.4	96
35	AAV5-miHTT gene therapy demonstrates suppression of mutant huntingtin aggregation and neuronal dysfunction in a rat model of Huntington's disease. Gene Therapy, 2017, 24, 630-639.	4.5	69
36	[O3–04–01]: TAU SPREADING: HOW ARE TAU ASSEMBLIES TRANSFERRED FROM CELLÂTO CELL?. Alzheimer' and Dementia, 2017, 13, P906.	^S 0.8	0

#	Article	IF	CITATIONS
37	Coupling of D2R Short but not D2R Long receptor isoform to the Rho/ <scp>ROCK</scp> signaling pathway renders striatal neurons vulnerable to mutant huntingtin. European Journal of Neuroscience, 2017, 45, 198-206.	2.6	5
38	From huntingtin gene toÂHuntington's disease-altering strategies. , 2017, , 251-276.		0
39	A neuronal MCT2 knockdown in the rat somatosensory cortex reduces both the NMR lactate signal and the BOLD response during whisker stimulation. PLoS ONE, 2017, 12, e0174990.	2.5	42
40	Dominant-Negative Effects of Adult-Onset Huntingtin Mutations Alter the Division of Human Embryonic Stem Cells-Derived Neural Cells. PLoS ONE, 2016, 11, e0148680.	2.5	22
41	L5â€Pre-clinical evaluation of aav5-mihtt gene therapy of huntington's disease in rodents. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, A91.3-A92.	1.9	0
42	463. Suspension-Adapted HEK 293 Cells in Orbital Shaken Bioreactors for the Production of Adeno-Associated Virus Vectors. Molecular Therapy, 2016, 24, S183-S184.	8.2	1
43	327. Genetic Editing for Huntington's Disease. Molecular Therapy, 2016, 24, S131.	8.2	0
44	Adeno-associated virus and lentivirus vectors: a refined toolkit for the central nervous system. Current Opinion in Virology, 2016, 21, 61-66.	5.4	26
45	Astrocytes are key but indirect contributors to the development of the symptomatology and pathophysiology of Huntington's disease. Glia, 2016, 64, 1841-1856.	4.9	37
46	L4â€Sustained and strong HTT silencing by AAV5-miHTT as therapy for huntington's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, A91.2-A91.	1.9	0
47	Alzheimer's disease-like APP processing in wild-type mice identifies synaptic defects as initial steps of disease progression. Molecular Neurodegeneration, 2016, 11, 5.	10.8	37
48	AMPK activation protects from neuronal dysfunction and vulnerability across nematode, cellular and mouse models of Huntington's disease. Human Molecular Genetics, 2016, 25, 1043-1058.	2.9	87
49	465. Transient Production of Recombinant Adeno-Associated Virus (AAV) Vectors for Gene Therapy Applications Using Suspension-Adapted HEK 293 Cells in Orbital Shaken Bioreactors. Molecular Therapy, 2015, 23, S184-S185.	8.2	0
50	O1-06-04: Non-human primate model of tauopathy. , 2015, 11, P138-P139.		0
51	Attenuated Levels of Hippocampal Connexin 43 and its Phosphorylation Correlate with Antidepressant- and Anxiolytic-Like Activities in Mice. Frontiers in Cellular Neuroscience, 2015, 9, 490.	3.7	58
52	Microtubule-associated protein 6 mediates neuronal connectivity through Semaphorin 3E-dependent signalling for axonal growth. Nature Communications, 2015, 6, 7246.	12.8	57
53	P1-037: Gene transfer of both app and ps1 induces hippocampal impairments close to human early phases of Alzheimer's disease. , 2015, 11, P351-P352.		0
54	The JAK/STAT3 Pathway Is a Common Inducer of Astrocyte Reactivity in Alzheimer's and Huntington's Diseases. Journal of Neuroscience, 2015, 35, 2817-2829.	3.6	221

#	Article	IF	CITATIONS
55	The striatal long noncoding RNA Abhd11os is neuroprotective against an N-terminal fragment of mutant huntingtin inÂvivo. Neurobiology of Aging, 2015, 36, 1601.e7-1601.e16.	3.1	34
56	Gene transfer engineering for astrocyte-specific silencing in the CNS. Gene Therapy, 2015, 22, 830-839.	4.5	20
57	Loss of the thyroid hormone-binding protein Crym renders striatal neurons more vulnerable to mutant huntingtin in Huntington's disease. Human Molecular Genetics, 2015, 24, 1563-1573.	2.9	25
58	Allele-Specific Silencing of Mutant Huntingtin in Rodent Brain and Human Stem Cells. PLoS ONE, 2014, 9, e99341.	2.5	45
59	Connexin 30 sets synaptic strength by controlling astroglial synapse invasion. Nature Neuroscience, 2014, 17, 549-558.	14.8	269
60	Neuron-to-neuron wild-type Tau protein transfer through a trans-synaptic mechanism: relevance to sporadic tauopathies. Acta Neuropathologica Communications, 2014, 2, 14.	5.2	203
61	SET translocation is associated with increase in caspase cleaved amyloid precursor protein in CA1 of Alzheimer and Down syndrome patients. Neurobiology of Aging, 2014, 35, 958-968.	3.1	14
62	P1-031: AMYLOID CASCADE INDUCTION IN AN AAV-BASED MOUSE MODEL OF ALZHEIMER'S DISEASE. , 2014, 1 P315-P315.	.0,	0
63	Lentiviral Vectors in Huntington's Disease Research and Therapy. Neuromethods, 2014, , 193-220.	0.3	1
64	RNA Interference Mitigates Motor and Neuropathological Deficits in a Cerebellar Mouse Model of Machado-Joseph Disease. PLoS ONE, 2014, 9, e100086.	2.5	33
65	O1-07-05: In vivo tau spreading relies on the transsynaptic transfer of soluble wild-type tau species. , 2013, 9, P142-P142.		Ο
66	Beclin 1 mitigates motor and neuropathological deficits in genetic mouse models of Machado–Joseph disease. Brain, 2013, 136, 2173-2188.	7.6	86
67	Overexpression of Mutant Ataxin-3 in Mouse Cerebellum Induces Ataxia and Cerebellar Neuropathology. Cerebellum, 2013, 12, 441-455.	2.5	24
68	Lentiviral-Mediated Gene Transfer of siRNAs for the Treatment of Huntington's Disease. Methods in Molecular Biology, 2013, 1010, 95-109.	0.9	4
69	Lentiviral Delivery of the Human Wild-type Tau Protein Mediates a Slow and Progressive Neurodegenerative Tau Pathology in the Rat Brain. Molecular Therapy, 2013, 21, 1358-1368.	8.2	31
70	BDNF overexpression in mouse hippocampal astrocytes promotes local neurogenesis and elicits anxiolytic-like activities. Translational Psychiatry, 2013, 3, e253-e253.	4.8	189
71	A role of mitochondrial complex II defects in genetic models of Huntington's disease expressing N-terminal fragments of mutant huntingtin. Human Molecular Genetics, 2013, 22, 3869-3882.	2.9	93
72	Silencing Mutant Ataxin-3 Rescues Motor Deficits and Neuropathology in Machado-Joseph Disease Transgenic Mice. PLoS ONE, 2013, 8, e52396.	2.5	104

#	Article	IF	CITATIONS
73	Efficient gene delivery and selective transduction of astrocytes in the mammalian brain using viral vectors. Frontiers in Cellular Neuroscience, 2013, 7, 106.	3.7	44
74	Lentiviral Vectors: A Powerful Tool to Target Astrocytes In Vivo. Current Drug Targets, 2013, 14, 1336-1346.	2.1	20
75	Early transcriptional changes linked to naturally occurring Huntington's disease mutations in neural derivatives of human embryonic stem cells. Human Molecular Genetics, 2012, 21, 3883-3895.	2.9	82
76	BO4â€AMPK activation alleviates phenotypes associated to the early phases of mutant polyQ cytoxicity. Journal of Neurology, Neurosurgery and Psychiatry, 2012, 83, A6.3-A7.	1.9	0
77	Capucin does not modify the toxicity of a mutant Huntingtin fragment in vivo. Neurobiology of Aging, 2012, 33, 1845.e5-1845.e6.	3.1	7
78	Calpastatin-mediated inhibition of calpains in the mouse brain prevents mutant ataxin 3 proteolysis, nuclear localization and aggregation, relieving Machado-Joseph disease. Brain, 2012, 135, 2428-2439.	7.6	98
79	Viral-mediated overexpression of mutant huntingtin to model HD in various species. Neurobiology of Disease, 2012, 48, 202-211.	4.4	15
80	Restricted Transgene Expression in the Brain with Cell-Type Specific Neuronal Promoters. Human Gene Therapy Methods, 2012, 23, 242-254.	2.1	36
81	Overexpression of the autophagic beclin-1 protein clears mutant ataxin-3 and alleviates Machado–Joseph disease. Brain, 2011, 134, 1400-1415.	7.6	171
82	Mitogen- and stress-activated protein kinase 1-induced neuroprotection in Huntington's disease: role on chromatin remodeling at the PGC-1-alpha promoter. Human Molecular Genetics, 2011, 20, 2422-2434.	2.9	50
83	Nuclear Factor Erythroid 2-Related Factor 2 Facilitates Neuronal Glutathione Synthesis by Upregulating Neuronal Excitatory Amino Acid Transporter 3 Expression. Journal of Neuroscience, 2011, 31, 7392-7401.	3.6	86
84	A09â€Characterisation of AMPK activity in models of Huntington's disease pathogenesis. Journal of Neurology, Neurosurgery and Psychiatry, 2010, 81, A3.3-A3.	1.9	0
85	In vivo expression of polyglutamine-expanded huntingtin by mouse striatal astrocytes impairs glutamate transport: a correlation with Huntington's disease subjects. Human Molecular Genetics, 2010, 19, 3053-3067.	2.9	282
86	Silencing ataxin-3 mitigates degeneration in a rat model of Machado–Joseph disease: no role for wild-type ataxin-3?. Human Molecular Genetics, 2010, 19, 2380-2394.	2.9	96
87	Mitochondria in Huntington's disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2010, 1802, 52-61.	3.8	235
88	Normal Aging Modulates the Neurotoxicity of Mutant Huntingtin. PLoS ONE, 2009, 4, e4637.	2.5	29
89	Human α-Iduronidase Gene Transfer Mediated by Adeno-Associated Virus Types 1, 2, and 5 in the Brain of Nonhuman Primates: Vector Diffusion and Biodistribution. Human Gene Therapy, 2009, 20, 350-360.	2.7	57
90	Positron Emission Tomography Imaging Demonstrates Correlation between Behavioral Recovery and Correction of Dopamine Neurotransmission after Gene Therapy. Journal of Neuroscience, 2009, 29, 1544-1553.	3.6	32

#	Article	IF	CITATIONS
91	Sustained effects of nonalleleâ€specific <i>Huntingtin</i> silencing. Annals of Neurology, 2009, 65, 276-285.	5.3	196
92	Engineered lentiviral vector targeting astrocytes <i>In vivo</i> . Glia, 2009, 57, 667-679.	4.9	136
93	Diminished hippocalcin expression in Huntington's disease brain does not account for increased striatal neuron vulnerability as assessed in primary neurons. Journal of Neurochemistry, 2009, 111, 460-472.	3.9	27
94	Implication of the JNK pathway in a rat model of Huntington's disease. Experimental Neurology, 2009, 215, 191-200.	4.1	63
95	Viral Vectors for in Vivo Gene Transfer. , 2009, , 1069-1096.		0
96	Haloperidol protects striatal neurons from dysfunction induced by mutated huntingtin in vivo. Neurobiology of Disease, 2008, 29, 22-29.	4.4	58
97	Dopamine determines the vulnerability of striatal neurons to the N-terminal fragment of mutant huntingtin through the regulation of mitochondrial complex II. Human Molecular Genetics, 2008, 17, 1446-1456.	2.9	66
98	Striatal and nigral pathology in a lentiviral rat model of Machado-Joseph disease. Human Molecular Genetics, 2008, 17, 2071-2083.	2.9	78
99	Dysregulation of Gene Expression in Primary Neuron Models of Huntington's Disease Shows That Polyglutamine-Related Effects on the Striatal Transcriptome May Not Be Dependent on Brain Circuitry. Journal of Neuroscience, 2008, 28, 9723-9731.	3.6	89
100	Applications of Lentiviral Vectors for Biology and Gene Therapy of Neurological Disorders. Current Gene Therapy, 2008, 8, 461-473.	2.0	139
101	Human and simian immunodeficiency viruses deregulate early hematopoiesis through a Nef/PPARγ/STAT5 signaling pathway in macaques. Journal of Clinical Investigation, 2008, 118, 1765-75.	8.2	63
102	Allele-Specific RNA Silencing of Mutant Ataxin-3 Mediates Neuroprotection in a Rat Model of Machado-Joseph Disease. PLoS ONE, 2008, 3, e3341.	2.5	141
103	Gene Transfer Techniques for the Delivery of GDNF in Parkinson's Disease. Novartis Foundation Symposium, 2008, 231, 202-219.	1.1	10
104	Neuroprotection by Hsp104 and Hsp27 in Lentiviral-based Rat Models of Huntington's Disease. Molecular Therapy, 2007, 15, 903-911.	8.2	135
105	Activation of Astrocytes by CNTF Induces Metabolic Plasticity and Increases Resistance to Metabolic Insults. Journal of Neuroscience, 2007, 27, 7094-7104.	3.6	103
106	Expression of Mutated Huntingtin Fragment in the Putamen Is Sufficient to Produce Abnormal Movement in Non-human Primates. Molecular Therapy, 2007, 15, 1444-1451.	8.2	83
107	Metabolic correction in oligodendrocytes derived from metachromatic leukodystrophy mouse model by using encapsulated recombinant myoblasts. Journal of the Neurological Sciences, 2007, 255, 7-16.	0.6	21
108	Transplants of CNTF-producing Cells for the Treatment of Huntington's Disease. , 2007, , 385-398.		2

Transplants of CNTF-producing Cells for the Treatment of Huntington's Disease. , 2007, , 385-398. 108

#	Article	IF	CITATIONS
109	Lentivirus-mediated expression of glutathione peroxidase: Neuroprotection in murine models of Parkinson's disease. Neurobiology of Disease, 2006, 21, 29-34.	4.4	69
110	Ciliary Neurotrophic Factor Activates Astrocytes, Redistributes Their Glutamate Transporters GLAST and GLT-1 to Raft Microdomains, and Improves Glutamate Handling In Vivo. Journal of Neuroscience, 2006, 26, 5978-5989.	3.6	79
111	Involvement of Mitochondrial Complex II Defects in Neuronal Death Produced by N-Terminus Fragment of Mutated Huntingtin. Molecular Biology of the Cell, 2006, 17, 1652-1663.	2.1	217
112	CA150 Expression Delays Striatal Cell Death in Overexpression and Knock-In Conditions for Mutant Huntingtin Neurotoxicity. Journal of Neuroscience, 2006, 26, 4649-4659.	3.6	48
113	Inhibition of Calcineurin by FK506 Protects against Polyglutamine-Huntingtin Toxicity through an Increase of Huntingtin Phosphorylation at S421. Journal of Neuroscience, 2006, 26, 1635-1645.	3.6	121
114	Akt is altered in an animal model of Huntington's disease and in patients. European Journal of Neuroscience, 2005, 21, 1478-1488.	2.6	156
115	Viral vectors as tools to model and treat neurodegenerative disorders. Journal of Gene Medicine, 2005, 7, 530-539.	2.8	46
116	Minocycline in phenotypic models of Huntington's disease. Neurobiology of Disease, 2005, 18, 206-217.	4.4	52
117	Progressive and selective striatal degeneration in primary neuronal cultures using lentiviral vector coding for a mutant huntingtin fragment. Neurobiology of Disease, 2005, 20, 785-798.	4.4	74
118	Lentiviral-Mediated Gene Transfer to Model Triplet Repeat Disorders. , 2004, 277, 199-214.		8
119	Survival of Encapsulated Human Primary Fibroblasts and Erythropoietin Expression Under Xenogeneic Conditions. Human Gene Therapy, 2004, 15, 669-680.	2.7	34
120	Neuroprotective Gene Therapy for Huntington's Disease, Using Polymer-Encapsulated Cells Engineered to Secrete Human Ciliary Neurotrophic Factor: Results of a Phase I Study. Human Gene Therapy, 2004, 15, 968-975.	2.7	222
121	Long-term lentiviral-mediated expression of ciliary neurotrophic factor in the striatum of Huntington's disease transgenic mice. Experimental Neurology, 2004, 185, 26-35.	4.1	54
122	Local GDNF expression mediated by lentiviral vector protects facial nerve motoneurons but not spinal motoneurons in SOD1G93A transgenic mice. Neurobiology of Disease, 2004, 16, 139-149.	4.4	47
123	Encapsulated GDNF-producing C2C12 cells for Parkinson's disease: a pre-clinical study in chronic MPTP-treated baboons. Neurobiology of Disease, 2004, 16, 428-439.	4.4	87
124	Lentiviral nigral delivery of GDNF does not prevent neurodegeneration in a genetic rat model of Parkinson's disease. Neurobiology of Disease, 2004, 17, 283-289.	4.4	118
125	Comparative study of GDNF delivery systems for the CNS: polymer rods, encapsulated cells, and lentiviral vectors. Journal of Controlled Release, 2003, 87, 107-115.	9.9	47
126	Optimization of human erythropoietin secretion from MLV-infected human primary fibroblasts used for encapsulated cell therapy. Journal of Gene Medicine, 2003, 5, 246-257.	2.8	20

#	Article	IF	CITATIONS
127	French gene therapy group reports on the adverse event in a clinical trial of gene therapy for X-linked severe combined immune deficiency (X-SCID). Journal of Gene Medicine, 2003, 5, 82-84.	2.8	30
128	Presence of Gal-α1,3Gal epitope on xenogeneic lines: implications for cellular gene therapy based on the encapsulation technology. Xenotransplantation, 2003, 10, 204-213.	2.8	8
129	Activity analysis of housekeeping promoters using self-inactivating lentiviral vector delivery into the mouse retina. Gene Therapy, 2003, 10, 818-821.	4.5	70
130	Multiply Attenuated, Self-Inactivating Lentiviral Vectors Efficiently Deliver and Express Genes for Extended Periods of Time in Adult Rat Cardiomyocytes In Vivo. Circulation, 2003, 107, 2375-2382.	1.6	82
131	Delivery of Ciliary Neurotrophic Factor via Lentiviral-Mediated Transfer Protects Axotomized Retinal Ganglion Cells for an Extended Period of Time. Human Gene Therapy, 2003, 14, 103-115.	2.7	101
132	Early and reversible neuropathology induced by tetracycline-regulated lentiviral overexpression of mutant huntingtin in rat striatum. Human Molecular Genetics, 2003, 12, 2827-2836.	2.9	75
133	Â-Synucleinopathy and selective dopaminergic neuron loss in a rat lentiviral-based model of Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 10813-10818.	7.1	488
134	Long-Term Doxycycline-Regulated Secretion of Erythropoietin by Encapsulated Myoblasts. Molecular Therapy, 2002, 6, 155-161.	8.2	35
135	Dose-Dependent Neuroprotective Effect of Ciliary Neurotrophic Factor Delivered via Tetracycline-Regulated Lentiviral Vectors in the Quinolinic Acid Rat Model of Huntington's Disease. Human Gene Therapy, 2002, 13, 1981-1990.	2.7	109
136	Lentiviral-Mediated RNA Interference. Human Gene Therapy, 2002, 13, 2197-2201.	2.7	273
137	Neurospheres modified to produce glial cell line-derived neurotrophic factor increase the survival of transplanted dopamine neurons. Journal of Neuroscience Research, 2002, 69, 955-965.	2.9	117
138	Seizure Suppression by Adenosineâ€releasing Cells Is Independent of Seizure Frequency. Epilepsia, 2002, 43, 788-796.	5.1	59
139	Delivery of erythropoietin by encapsulated myoblasts in a genetic model of severe anemia. Kidney International, 2002, 62, 1395-1401.	5.2	32
140	Lentiviruses as Vectors for CNS Diseases. Current Topics in Microbiology and Immunology, 2002, 261, 191-209.	1.1	32
141	Lentiviral-Mediated Delivery of Mutant Huntingtin in the Striatum of Rats Induces a Selective Neuropathology Modulated by Polyglutamine Repeat Size, Huntingtin Expression Levels, and Protein Length. Journal of Neuroscience, 2002, 22, 3473-3483.	3.6	184
142	Lentivirally Delivered Glial Cell Line-Derived Neurotrophic Factor Increases the Number of Striatal Dopaminergic Neurons in Primate Models of Nigrostriatal Degeneration. Journal of Neuroscience, 2002, 22, 4942-4954.	3.6	187
143	Isolation of Multipotent Neural Precursors Residing in the Cortex of the Adult Human Brain. Experimental Neurology, 2001, 170, 48-62.	4.1	274
144	Gene Transfer into Neurons from Hippocampal Slices: Comparison of Recombinant Semliki Forest Virus, Adenovirus, Adeno-Associated Virus, Lentivirus, and Measles Virus. Molecular and Cellular Neurosciences, 2001, 17, 855-871.	2.2	125

#	Article	IF	CITATIONS
145	Neuroprotective Effect of a CNTF-Expressing Lentiviral Vector in the Quinolinic Acid Rat Model of Huntington's Disease. Neurobiology of Disease, 2001, 8, 433-446.	4.4	150
146	Viral vector-mediated gene therapy for Parkinson's disease. Clinical Neuroscience Research, 2001, 1, 496-506.	0.8	8
147	Neuroprotective effect of interleukin-6 and IL6/IL6R chimera in the quinolinic acid rat model of Huntington's syndrome. European Journal of Neuroscience, 2001, 14, 1753-1761.	2.6	44
148	Grafts of adenosine-releasing cells suppress seizures in kindling epilepsy. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 7611-7616.	7.1	196
149	Complete and Long-Term Rescue of Lesioned Adult Motoneurons by Lentiviral-Mediated Expression of Glial Cell Line-Derived Neurotrophic Factor in the Facial Nucleus. Journal of Neuroscience, 2000, 20, 5587-5593.	3.6	170
150	Restoration of Cognitive and Motor Functions by Ciliary Neurotrophic Factor in a Primate Model of Huntington's Disease. Human Gene Therapy, 2000, 11, 1177-1188.	2.7	138
151	Neuroprotective Gene Therapy for Huntington's Disease Using a Polymer Encapsulated BHK Cell Line Engineered to Secrete Human CNTF. Human Gene Therapy, 2000, 11, 1723-1729.	2.7	154
152	Lentiviral Vectors as a Gene Delivery System in the Mouse Midbrain: Cellular and Behavioral Improvements in a 6-OHDA Model of Parkinson's Disease Using GDNF. Experimental Neurology, 2000, 164, 15-24.	4.1	167
153	Neurodegeneration Prevented by Lentiviral Vector Delivery of GDNF in Primate Models of Parkinson's Disease. Science, 2000, 290, 767-773.	12.6	1,201
154	Self-Inactivating Lentiviral Vectors with Enhanced Transgene Expression as Potential Gene Transfer System in Parkinson's Disease. Human Gene Therapy, 2000, 11, 179-190.	2.7	276
155	Efficient Gene Transfer and Expression of Biologically Active Glial Cell Lineâ€Derived Neurotrophic Factor in Rat Motoneurons Transduced with Lentiviral Vectors. Journal of Neurochemistry, 2000, 74, 1820-1828.	3.9	28
156	Cellular xenotransplantation. Nature Medicine, 1999, 5, 852-852.	30.7	9
157	Improvement of mouse β-thalassemia upon erythropoietin delivery by encapsulated myoblasts. Gene Therapy, 1999, 6, 157-161.	4.5	48
158	Lentiviral Gene Transfer to the Nonhuman Primate Brain. Experimental Neurology, 1999, 160, 1-16.	4.1	186
159	Continuous delivery of human and mouse erythropoietin in mice by genetically engineered polymer encapsulated myoblasts. Gene Therapy, 1998, 5, 1014-1022.	4.5	76
160	A Gene Therapy Approach to Regulated Delivery of Erythropoietin as a Function of Oxygen Tension. Human Gene Therapy, 1997, 8, 1881-1889.	2.7	88
161	A Gene Therapy Approach for the Treatment of Amyotrophic Lateral Sclerosis and Parkinson's Disease. Advances in Pharmacology, 1997, 42, 929-931.	2.0	2
162	Rescue of motoneurons from axotomy-induced cell death by polymer encapsulated cells genetically engineered to release CNTF. Cell Transplantation, 1996, 5, 577-587.	2.5	35

#	Article	IF	CITATIONS
163	Central Nervous System Delivery of Recombinant Ciliary Neurotrophic Factor by Polymer Encapsulated Differentiated C ₂ C ₁₂ Myoblasts. Human Gene Therapy, 1996, 7, 2135-2146.	2.7	78
164	Intrathecal delivery of CNTF using encapsulated genetically modifiedxenogeneic cells in amyotrophic lateral sclerosis patients. Nature Medicine, 1996, 2, 696-699.	30.7	449
165	Gene Therapy for Amyotrophic Lateral Sclerosis (ALS) Using a Polymer Encapsulated Xenogenic Cell Line Engineered to Secrete hCNTF. Lausanne University Medical School, Lausanne, Switzerland. Human Gene Therapy, 1996, 7, 851-860.	2.7	108
166	Rescue of motoneurons from axotomy-induced cell death by polymer encapsulated cells genetically engineered to release CNTF. Cell Transplantation, 1996, 5, 577-87.	2.5	2
167	Encapsulation of neurotrophic factor-releasing cells for the treatment of neurodegenerative diseases. Restorative Neurology and Neuroscience, 1995, 8, 65-66.	0.7	6
168	Fatty Acids Regulate Thy-1 Antigen mRNA Stability in T Lymphocyte Precursors. FEBS Journal, 1995, 231, 687-696.	0.2	8
169	Minimal membrane and secreted μ poly(A) signals specify developmentally-regulated immunoglobulin heavy chain mRNA ratios without RNA splicing. Molecular Immunology, 1994, 31, 563-566.	2.2	0
170	Membrane μ poly(A) signal and 3′ flanking sequences function as a transcription terminator for immunoglobulin-encoding genes. Gene, 1992, 122, 297-304.	2.2	3
171	Multi-level regulation of Thy-1 antigen expression in mouse T lymphomas. Immunogenetics, 1992, 35, 126-30.	2.4	8
172	EVALUATION OF SOMATIC CELL VARIANTS DEFICIENT IN GLYCOSYLPHOSPHATIDYL-INOSITOL ANCHORING AS CANDIDATES FOR GENETIC CORRECTION. , 1992, , 197-210.		0
173	Evaluation of somatic cell variants deficient in glycosylphosphatidyl-inositol anchoring as candidates for genetic correction. Cell Biology International Reports, 1991, 15, 1051-1064.	0.6	5
174	Translocation of the yeast Dolichol-phosphate-mannose synthase into microsomal membranes. Biochemical and Biophysical Research Communications, 1991, 174, 1337-1342.	2.1	6
175	Isolation from mouse fibroblasts of a cDNA encoding a new form of the fibroblast growth factor receptor (flg). Biochemical and Biophysical Research Communications, 1991, 178, 8-15.	2.1	12
176	Restricted transgene expression in the brain with cell-type specific neuronal promoters. Human Gene Therapy Methods, 0, , 121017063203000.	2.1	3