June M Kwak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/932446/publications.pdf Version: 2024-02-01

LUNE M KWAK

#	Article	IF	CITATIONS
1	Stomatal Lineage Control by Developmental Program and Environmental Cues. Frontiers in Plant Science, 2021, 12, 751852.	1.7	12
2	Methionine synthase 1 provides methionine for activation of the GLR3.5 Ca2+ channel and regulation of germination in Arabidopsis. Journal of Experimental Botany, 2020, 71, 178-187.	2.4	16
3	Glycosyltransferase-Like RSE1 Negatively Regulates Leaf Senescence Through Salicylic Acid Signaling in Arabidopsis. Frontiers in Plant Science, 2020, 11, 551.	1.7	9
4	Regulation of stomatal development by stomatal lineage miRNAs. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6237-6245.	3.3	18
5	Proteasome subunit RPT2a promotes PTGS through repressing RNA quality control in Arabidopsis. Nature Plants, 2019, 5, 1273-1282.	4.7	11
6	A Lignin Molecular Brace Controls Precision Processing of Cell Walls Critical for Surface Integrity in Arabidopsis. Cell, 2018, 173, 1468-1480.e9.	13.5	109
7	Calmodulin 1 Regulates Senescence and ABA Response in Arabidopsis. Frontiers in Plant Science, 2018, 9, 803.	1.7	38
8	Cellular coordination controlling organ separation and surface integrity in plants. BMB Reports, 2018, 51, 317-318.	1.1	0
9	MPK9 and MPK12 function in SA-induced stomatal closure in <i>Arabidopsis thaliana</i> . Bioscience, Biotechnology and Biochemistry, 2017, 81, 1394-1400.	0.6	26
10	Sensors Make Sense of Signaling. Plant and Cell Physiology, 2017, 58, 1121-1125.	1.5	6
11	The Protein Trio RPK1–CaM4–RbohF Mediates Transient Superoxide Production to Trigger Age-Dependent Cell Death in Arabidopsis. Cell Reports, 2017, 21, 3373-3380.	2.9	34
12	MAPK Cascades in Guard Cell Signal Transduction. Frontiers in Plant Science, 2016, 7, 80.	1.7	100
13	POWERDRESS and HDA9 interact and promote histone H3 deacetylation at specific genomic sites in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14858-14863.	3.3	111
14	L-Met Activates Arabidopsis GLR Ca2+ Channels Upstream of ROS Production and Regulates Stomatal Movement. Cell Reports, 2016, 17, 2553-2561.	2.9	71
15	Molecular and systems approaches towards droughtâ€ŧolerant canola crops. New Phytologist, 2016, 210, 1169-1189.	3.5	70
16	BRI1-Associated Receptor Kinase 1 Regulates Guard Cell ABA Signaling Mediated by Open Stomata 1 in Arabidopsis. Molecular Plant, 2016, 9, 447-460.	3.9	170
17	Arabidopsis Glutamate Receptor Homolog3.5 Modulates Cytosolic Ca2+ Level to Counteract Effect of Abscisic Acid in Seed Germination Â. Plant Physiology, 2015, 167, 1630-1642.	2.3	127
18	Two guard cell mitogenâ€activated protein kinases, <scp>MPK</scp> 9 and <scp>MPK</scp> 12, function in methyl jasmonateâ€induced stomatal closure in <i>Arabidopsis thaliana</i> . Plant Biology, 2015, 17, 946-952.	1.8	48

JUNE M KWAK

#	Article	IF	CITATIONS
19	Suppression of Arabidopsis AtPUB30 resulted in increased tolerance to salt stress during germination. Plant Cell Reports, 2015, 34, 277-289.	2.8	35
20	R. S. WebTool, a web server for random sampling-based significance evaluation of pairwise distances. Nucleic Acids Research, 2014, 42, W198-W204.	6.5	0
21	Acetylated 1,3â€diaminopropane antagonizes abscisic acidâ€mediated stomatal closing in <scp>A</scp> rabidopsis. Plant Journal, 2014, 79, 322-333.	2.8	43
22	Border Control—A Membrane-Linked Interactome of <i>Arabidopsis</i> . Science, 2014, 344, 711-716.	6.0	213
23	In Situ metabolic analysis of single plant cells by capillary microsampling and electrospray ionization mass spectrometry with ion mobility separation. Analyst, The, 2014, 139, 5079-5085.	1.7	82
24	Two guard cellâ€preferential MAPKs, MPK9 and MPK12, regulate YEL signalling in <i>Arabidopsis</i> guard cells. Plant Biology, 2013, 15, 436-442.	1.8	29
25	Rapid apoplastic pH measurement in <i>Arabidopsis</i> leaves using a fluorescent dye. Plant Signaling and Behavior, 2013, 8, e22587.	1.2	14
26	Crosstalk between the Circadian Clock and Innate Immunity in Arabidopsis. PLoS Pathogens, 2013, 9, e1003370.	2.1	164
27	Direct force measurement of single DNA–peptide interactions using atomic force microscopy. Journal of Molecular Recognition, 2013, 26, 268-275.	1.1	7
28	MAP Kinases, MPK9 and MPK12, Regulate Chitosan-Induced Stomatal Closure. Bioscience, Biotechnology and Biochemistry, 2012, 76, 1785-1787.	0.6	34
29	Vacuolar CAX1 and CAX3 Influence Auxin Transport in Guard Cells via Regulation of Apoplastic pH Â Â. Plant Physiology, 2012, 160, 1293-1302.	2.3	64
30	Roles of Four Arabidopsis U-Box E3 Ubiquitin Ligases in Negative Regulation of Abscisic Acid-Mediated Drought Stress Responses Â. Plant Physiology, 2012, 160, 556-568.	2.3	136
31	Comparative Genomics and Molecular Characterization of the Maize PIN Family Proteins. Frontiers in Plant Science, 2012, 3, 43.	1.7	7
32	Calciumâ€permeable channels in plant cells. FEBS Journal, 2011, 278, 4262-4276.	2.2	103
33	Two Arabidopsis guard cell-preferential MAPK genes, <i>MPK9</i> and <i>MPK12</i> , function in biotic stress response. Plant Signaling and Behavior, 2011, 6, 1875-1877.	1.2	54
34	A membrane protein / signaling protein interaction network for Arabidopsis version AMPv2. Frontiers in Physiology, 2010, 1, 24.	1.3	131
35	Arabidopsis Annexins AnnAt1 and AnnAt4 Interact with Each Other and Regulate Drought and Salt Stress Responses. Plant and Cell Physiology, 2010, 51, 1499-1514.	1.5	135
36	Phosphorylation of the Arabidopsis AtrbohF NADPH oxidase by OST1 protein kinase. FEBS Letters, 2009, 583, 2982-2986.	1.3	373

JUNE M KWAK

#	Article	IF	CITATIONS
37	Corrigendum to "Phosphorylation of the Arabidopsis AtrbohF NADPH oxidase by OST1 protein kinase― [FEBS Lett. 583 (2009) 2982-2986]. FEBS Letters, 2009, 583, 3375-3375.	1.3	3
38	ROS-Mediated ABA Signaling. Journal of Plant Biology, 2009, 52, 102-113.	0.9	60
39	Deâ€regulated expression of the plant glutamate receptor homolog <i>AtGLR3.1</i> impairs longâ€term Ca ²⁺ â€programmed stomatal closure. Plant Journal, 2009, 58, 437-449.	2.8	98
40	MAP kinases <i>MPK9</i> and <i>MPK12</i> are preferentially expressed in guard cells and positively regulate ROS-mediated ABA signaling. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20520-20525.	3.3	368
41	The <i>Arabidopsis</i> Small G Protein ROP2 Is Activated by Light in Guard Cells and Inhibits Light-Induced Stomatal Opening. Plant Cell, 2008, 20, 75-87.	3.1	55
42	The Clickable Guard Cell, Version II: Interactive Model of Guard Cell Signal Transduction Mechanisms and Pathways. The Arabidopsis Book, 2008, 6, e0114.	0.5	36
43	<i>Arabidopsis</i> PUB22 and PUB23 Are Homologous U-Box E3 Ubiquitin Ligases That Play Combinatory Roles in Response to Drought Stress. Plant Cell, 2008, 20, 1899-1914.	3.1	221
44	Participation of Endomembrane Cation/H+ Exchanger AtCHX20 in Osmoregulation of Guard Cells. Plant Physiology, 2007, 144, 82-93.	2.3	95
45	Phosphatidylinositol 4,5â€bisphosphate is important for stomatal opening. Plant Journal, 2007, 52, 803-816.	2.8	90
46	Activation of Glucosidase via Stress-Induced Polymerization Rapidly Increases Active Pools of Abscisic Acid. Cell, 2006, 126, 1109-1120.	13.5	582
47	CDPKs CPK6 and CPK3 Function in ABA Regulation of Guard Cell S-Type Anion- and Ca2+- Permeable Channels and Stomatal Closure. PLoS Biology, 2006, 4, e327.	2.6	523
48	The Role of Reactive Oxygen Species in Hormonal Responses. Plant Physiology, 2006, 141, 323-329.	2.3	330
49	Microarray Expression Analyses of Arabidopsis Guard Cells and Isolation of a Recessive Abscisic Acid Hypersensitive Protein Phosphatase 2C Mutant[W]. Plant Cell, 2004, 16, 596-615.	3.1	508
50	Cytoplasmic Alkalization Precedes Reactive Oxygen Species Production during Methyl Jasmonate- and Abscisic Acid-Induced Stomatal Closure. Plant Physiology, 2004, 134, 1536-1545.	2.3	429
51	NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO Journal, 2003, 22, 2623-2633.	3.5	1,474
52	Localization, Ion Channel Regulation, and Genetic Interactions during Abscisic Acid Signaling of the Nuclear mRNA Cap-Binding Protein, ABH1. Plant Physiology, 2002, 130, 1276-1287.	2.3	82
53	Phosphatidylinositol 3- and 4-Phosphate Are Required for Normal Stomatal Movements. Plant Cell, 2002, 14, 2399-2412.	3.1	186
54	Disruption of a Guard Cell–Expressed Protein Phosphatase 2A Regulatory Subunit, RCN1, Confers Abscisic Acid Insensitivity in Arabidopsis. Plant Cell, 2002, 14, 2849-2861.	3.1	192

June M Kwak

#	Article	IF	CITATIONS
55	Random antisense cDNA mutagenesis as an efficient functional genomic approach in higher plants. Planta, 2002, 214, 668-674.	1.6	11
56	GUARDCELLSIGNALTRANSDUCTION. Annual Review of Plant Biology, 2001, 52, 627-658.	14.2	1,038
57	An mRNA Cap Binding Protein, ABH1, Modulates Early Abscisic Acid Signal Transduction in Arabidopsis. Cell, 2001, 106, 477-487.	13.5	414
58	Guard cell abscisic acid signalling and engineering drought hardiness in plants. Nature, 2001, 410, 327-330.	13.7	694
59	Dominant Negative Guard Cell K+ Channel Mutants Reduce Inward-Rectifying K+ Currents and Light-Induced Stomatal Opening in Arabidopsis. Plant Physiology, 2001, 127, 473-485.	2.3	173
60	Overexpression of the AtGluR2 Gene Encoding anArabidopsis Homolog of Mammalian Glutamate Receptors Impairs CalciumUtilization and Sensitivity to Ionic Stress in TransgenicPlants. Plant and Cell Physiology, 2001, 42, 74-84.	1.5	189
61	The Identity of Plant Glutamate Receptors. Science, 2001, 292, 1486b-1487.	6.0	175
62	Cameleon calcium indicator reports cytoplasmic calcium dynamics in Arabidopsis guard cells. Plant Journal, 1999, 19, 735-747.	2.8	332
63	A Brassica cDNA clone encoding a bifunctional hydroxymethylpyrimidine kinase/thiamin-phosphate pyrophosphorylase involved in thiamin biosynthesis. Plant Molecular Biology, 1998, 37, 955-966.	2.0	18
64	ldentification of a Receptor-Like Protein Kinase Gene Rapidly Induced by Abscisic Acid, Dehydration, High Salt, and Cold Treatments in Arabidopsis thaliana. Plant Physiology, 1997, 113, 1203-1212.	2.3	222
65	Insulin-induced maturation of Xenopus oocytes is inhibited by microinjection of a Brassica napus cDNA clone with high similarity to a mammalian receptor for activated protein kinase C. Planta, 1997, 201, 245-251.	1.6	27
66	Evaluation of 515 expressed sequence tags obtained from guard cells of Brassica campestris. Planta, 1997, 202, 9-17.	1.6	64
67	Frequent in-frame length variations are found in the diverged simple repeat sequences of the protein-coding regions of two putative protein kinase genes of Brassica napus. Plant Molecular Biology, 1995, 27, 829-833.	2.0	6
68	Functional complementation of a yeast vesicular transport mutation ypt1-1 by a Brassica napus cDNA clone encoding a small GTP-binding protein. Plant Molecular Biology, 1994, 26, 1725-1735.	2.0	32
69	Two putative protein kinases from Arabidopsis thaliana contain highly acidic domains. Plant Molecular Biology, 1993, 22, 615-624.	2.0	36
70	Generation of Expressed Sequence Tags of Random Root cDNA Clones of Brassica napus by Single-Run Partial Sequencing. Plant Physiology, 1993, 103, 359-370.	2.3	88
71	Dominant Negative Guard Cell K+ Channel Mutants Reduce Inward-Rectifying K+ Currents and Light-Induced Stomatal Opening in Arabidopsis. , 0, .		30