
Carlo Rosso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9324443/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biochar as a cheap and environmental friendly filler able to improve polymer mechanical properties. Biomass and Bioenergy, 2019, 120, 219-223.	5.7	86
2	Low-Cost Carbon Fillers to Improve Mechanical Properties and Conductivity of Epoxy Composites. Polymers, 2017, 9, 642.	4.5	74
3	Influence of Commercial Biochar Fillers on Brittleness/Ductility of Epoxy Resin Composites. Applied Sciences (Switzerland), 2019, 9, 3109.	2.5	44
4	Proposal of a modal-geometrical-based master nodes selection criterion in modal analysis. Mechanical Systems and Signal Processing, 2009, 23, 606-620.	8.0	37
5	Influence of pyrolytic thermal history on olive pruning biochar and related epoxy composites mechanical properties. Journal of Composite Materials, 2020, 54, 1863-1873.	2.4	30
6	An easy instrument and a methodology for the monitoring and the diagnosis of a rail. Mechanical Systems and Signal Processing, 2009, 23, 940-956.	8.0	28
7	High-Temperature Annealed Biochar as a Conductive Filler for the Production of Piezoresistive Materials for Energy Conversion Application. ACS Applied Electronic Materials, 2021, 3, 838-844.	4.3	26
8	Effect of incorporation of microstructured carbonized cellulose on surface and mechanical properties of epoxy composites. Journal of Applied Polymer Science, 2020, 137, 48896.	2.6	23
9	Effect of rim and web interaction on crack propagation paths in gears by means of XFEM technique. Fatigue and Fracture of Engineering Materials and Structures, 2015, 38, 1237-1245.	3.4	22
10	Carbon from waste source: An eco-friendly way for strengthening polymer composites. Composites Part B: Engineering, 2018, 132, 87-96.	12.0	20
11	Innovative functionalized carbon fibers from waste: How to enhance polymer composites properties. Composites Part B: Engineering, 2018, 139, 31-39.	12.0	20
12	Study of two alternative cooling systems of a mold insert used in die casting process of light alloy components. Procedia Structural Integrity, 2019, 24, 569-582.	0.8	18
13	Bearing Health Monitoring Based on the Orthogonal Empirical Mode Decomposition. Shock and Vibration, 2020, 2020, 1-9.	0.6	17
14	Crack propagation behavior in planet gears. Procedia Structural Integrity, 2016, 2, 3610-3616.	0.8	15
15	Health Indicators Construction for Damage Level Assessment in Bearing Diagnostics: A Proposal of an Energetic Approach Based on Envelope Analysis. Applied Sciences (Switzerland), 2020, 10, 8131.	2.5	15
16	Sources of Excitation and Models for Cylindrical Gear Dynamics: A Review. Machines, 2020, 8, 37.	2.2	15
17	Influence of high speed on crack propagation path in thin rim gears. Fatigue and Fracture of Engineering Materials and Structures, 2017, 40, 120-129.	3.4	12
18	2D nonlinear and non-Hertzian gear teeth deflection model for static transmission error calculation. Mechanism and Machine Theory, 2021, 166, 104471.	4.5	12

#	Article	IF	CITATIONS
19	Exhaust Manifold Thermo-Structural Simulation Methodology. , 2005, , .		11
20	Numerical Analysis of Gear Rattle. , 0, , .		8
21	Gear Teeth Deflection Model for Spur Gears: Proposal of a 3D Nonlinear and Non-Hertzian Approach. Machines, 2021, 9, 223.	2.2	8
22	Improvements on Design and Validation of Automotive Steel Wheels. Mechanisms and Machine Science, 2019, , 1639-1649.	0.5	8
23	Proposal of a novel approach for 3D tooth contact analysis and calculation of the static transmission error in loaded gears. Procedia Structural Integrity, 2019, 24, 178-189.	0.8	7
24	Modal Analyses and Meta-Models for Fatigue Assessment of Automotive Steel Wheels. Conference Proceedings of the Society for Experimental Mechanics, 2020, , 155-163.	0.5	7
25	Rolling Bearings Monitoring and Damage Detection Methodology. Applied Mechanics and Materials, 2005, 3-4, 293-302.	0.2	6
26	Investigation about crack propagation paths in thin rim gears. Frattura Ed Integrita Strutturale, 2014, 8, 446-453.	0.9	6
27	A Methodology for Automotive Steel Wheel Life Assessment. , 0, , .		6
28	Internal Combustion Engine Design: a Practical Computational Methodology. SAE International Journal of Engines, 0, 2, 263-270.	0.4	5
29	A proposal for semi-analytical model of teeth contact with application to gear dynamics. , 0, , .		5
30	Integrated CAD/CAE Functional Design for Engine Components and Assembly. , 0, , .		4
31	Investigation of crack propagation path in tube gears. Procedia Structural Integrity, 2017, 7, 476-483.	0.8	4
32	Hardware and Virtual Test-Rigs for Automotive Steel Wheels Design. SAE International Journal of Advances and Current Practices in Mobility, 0, 2, 3481-3489.	2.0	4
33	Thermo-mechanical analysis using a multiphysics approach. Journal of Physics: Conference Series, 2009, 181, 012095.	0.4	3
34	Residual Life Estimation Under Low-Cycle and Thermo-Mechanical Fatigue Conditions: Proposal of a Dedicated Numerical Code. , 2014, , .		3
35	An Unified Framework for Studying Gear Dynamics Through Model Reduction Techniques. Conference Proceedings of the Society for Experimental Mechanics, 2016, , 233-242.	0.5	3

#	Article	IF	CITATIONS
37	Effect of Web Flexibility in Gear Engagement: A Proposal of Analysis Strategy. Vibration, 2022, 5, 200-212.	1.9	3
38	Numerical and Experimental Analysis of Exhaust Manifold Gasket. , 2006, , .		2
39	Comparison between Dynamic Condensation Techniques in Automotive Application. , 2006, , .		2
40	A Modal-Geometrical Selection Criterion in Dynamic Condensation Techniques. , 2006, , 349.		2
41	A Proposal of an Oil Pan Optimization Methodology. , 2010, , .		2
42	Industrial Knowledge Management Tools Applied to Engineering Education. IFIP Advances in Information and Communication Technology, 2016, , 3-12.	0.7	2
43	Advanced vision approach applied to non-contact micro-measurements: a practical application. International Journal of Advanced Manufacturing Technology, 2017, 88, 471-481.	3.0	2
44	Influence of Actual Static Transmission Error and Contact Ratio on Gear Engagement Dynamics. Conference Proceedings of the Society for Experimental Mechanics, 2017, , 143-154.	0.5	2
45	Effect of centrifugal load on crack path in thin-rimmed and webbed gears. Frattura Ed Integrita Strutturale, 2016, , .	0.9	2
46	Gearbox Paradigm: A Support for Quick and Effective Gearbox Design. , 0, , .		2
47	Test Bench for Static Transmission Error Evaluation in Gears. , 0, , .		2
48	A Numerical Methodology for Evaluating Structural and Dynamic Behavior of a Shaft in Powertrain Application. , 0, , .		1
49	Experimental validation of a numerical multiphysics technique for electroâ€thermoâ€mechanical problem. COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2010, 29, 1642-1652.	0.9	1
50	New concept for micro-manipulation systems: a practical experience. International Journal of Advanced Manufacturing Technology, 2014, 74, 1077-1085.	3.0	1
51	Weight reduction through material changing in a commercial diesel engine: piston pin and connecting rod case studies. International Journal of Automotive Composites, 2017, 3, 83.	0.1	1
52	Evaluation of the effect of profile modifications in gears subjected to sudden torque inversion. IOP Conference Series: Materials Science and Engineering, 2021, 1038, 012014.	0.6	1
53	Envelope analysis applied to non-Hertzian contact simulations in damaged roller bearings. IOP Conference Series: Materials Science and Engineering, 2021, 1038, 012013.	0.6	1
54	A Modal-Geometrical Selection Criterion for Master Nodes: Numerical and Experimental Testing. Conference Proceedings of the Society for Experimental Mechanics, 2011, , 281-295.	0.5	1

#	Article	IF	CITATIONS
55	Weight reduction through material changing in a commercial diesel engine: piston pin and connecting rod case studies. International Journal of Automotive Composites, 2017, 3, 83.	0.1	1
56	On the Veering Phenomenon Potential in High Speed Gears Design. Conference Proceedings of the Society for Experimental Mechanics, 2019, , 135-142.	0.5	1
57	Modelling Strategy and Parametric Study of Metal Gaskets for Automotive Applications. CMES - Computer Modeling in Engineering and Sciences, 2020, 125, 51-64.	1.1	1
58	Damage Criterions in Thermo-Mechanical Fatigue Models. , 2006, , 105.		0
59	Design and Numerical Simulation of an Optic Fibre Sensor for Damage Assessment of Structures. Key Engineering Materials, 2007, 347, 393-398.	0.4	0
60	Numerical Methodology for Evaluating Side Impact Effects in Rally Car. , 0, , .		0
61	A Strategy for Quickly Analyzing the Brake Disc Mounting Bell of Racing Cars. , 0, , .		0
62	An Easy Methodology for Designing Powertrain Bottom Protection in Composite Material of a Rally Car. , 2008, , .		0
63	Thermo-Mechanical Analysis of a Cast Iron Exhaust Manifold: a Comparison Between the Traditional and a New Methodology. , 2010, , .		0
64	A Modal-Geometrical Selection Criterion for Master Nodes Applied to Engine Components. , 2011, , .		0
65	1. Multiwalled Carbon nanotube – Strength to polymer composite. , 2015, , 1-22.		0
66	Could the Veering Phenomenon be a Mechanical Design Instrument?. Conference Proceedings of the Society for Experimental Mechanics, 2017, , 85-95.	0.5	0
67	A proposal of a unique formula for computing compliance in bolted joints. Procedia Structural Integrity, 2019, 24, 167-177.	0.8	0
68	Inverse Eigensensitivity Approach in Model Updating of Avionic Components. Conference Proceedings of the Society for Experimental Mechanics, 2012, , 149-165.	0.5	0
69	Classical Physical Problems. Lecture Notes in Electrical Engineering, 2013, , 49-90.	0.4	0
70	Multiphysics Problems. Lecture Notes in Electrical Engineering, 2013, , 91-114.	0.4	0
71	Modelling of Gear Meshing: A Numerical Approach for Dynamic Behavior Estimation of Thin Gears. Conference Proceedings of the Society for Experimental Mechanics, 2013, , 319-333.	0.5	0

Functionality Analysis of Thermoplastic Composite Material to Design Engine Components. , 0, , .

0