Mayank Varun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9324246/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Accumulation of uranium by aquatic plants in field conditions: Prospects for phytoremediation. Science of the Total Environment, 2014, 470-471, 993-1002.	3.9	68
2	Cadmium toxicity in cowpea plant: Effect of foliar intervention of nano-TiO2 on tissue Cd bioaccumulation, stress enzymes and potential dietary health risk. Journal of Biotechnology, 2020, 310, 54-61.	1.9	67
3	Metal contamination of soils and plants associated with the glass industry in North Central India: prospects of phytoremediation. Environmental Science and Pollution Research, 2012, 19, 269-281.	2.7	55
4	Phytoremedial assessment of flora tolerant to heavy metals in the contaminated soils of an abandoned Pb mine in Central Portugal. Chemosphere, 2013, 90, 2216-2225.	4.2	49
5	Identification of Calotropis procera L. as a potential phytoaccumulator of heavy metals from contaminated soils in Urban North Central India. Journal of Hazardous Materials, 2010, 184, 457-464.	6.5	48
6	The effect of plant growth-promoting rhizobacteria on the growth, physiology, and Cd uptake of <i>Arundo donax</i> L. International Journal of Phytoremediation, 2017, 19, 360-370.	1.7	44
7	Assessment of edibility and effect of arbuscular mycorrhizal fungi on Solanum melongena L. grown under heavy metal(loid) contaminated soil. Ecotoxicology and Environmental Safety, 2018, 148, 318-326.	2.9	44
8	Metal(loid) accumulation in aquatic plants of a mining area: Potential for water quality biomonitoring and biogeochemical prospecting. Chemosphere, 2018, 194, 158-170.	4.2	40
9	Spatial Distribution of Heavy Metals in Soil and Flora Associated with the Glass Industry in North Central India: Implications for Phytoremediation. Soil and Sediment Contamination, 2013, 22, 1-20.	1.1	29
10	Phytoremediation of Soils Contaminated with Metals and Metalloids at Mining Areas: Potential of Native Flora. , 0, , .		27
11	Distribution of rare earth elements, thorium and uranium in streams and aquatic mosses of Central Portugal. Environmental Earth Sciences, 2017, 76, 1.	1.3	25
12	Effect of <i>Glomus mosseae</i> on accumulation efficiency, hazard index and antioxidant defense mechanisms in tomato under metal(loid) Stress. International Journal of Phytoremediation, 2018, 20, 885-894.	1.7	25
13	Harnessing <i>Pisum sativum–Clomus mosseae</i> symbiosis for phytoremediation of soil contaminated with lead, cadmium, and arsenic. International Journal of Phytoremediation, 2021, 23, 279-290.	1.7	19
14	Phytoextraction Potential of Prosopis juliflora (Sw.) DC. with Specific Reference to Lead and Cadmium. Bulletin of Environmental Contamination and Toxicology, 2011, 87, 45-49.	1.3	18
15	Metal(loid) induced toxicity and defense mechanisms in Spinacia oleracea L.: Ecological hazard and Prospects for phytoremediation. Ecotoxicology and Environmental Safety, 2019, 183, 109570.	2.9	18
16	Identification of Sesbania sesban (L.) Merr. as an Efficient and Well Adapted Phytoremediation Tool for Cd Polluted Soils. Bulletin of Environmental Contamination and Toxicology, 2017, 98, 867-873.	1.3	17
17	Evaluating the trace metal pollution of an urban paddy soil and bioaccumulation in rice (Oryza sativa) Tj ETQq1 Environmental Earth Sciences, 2016, 75, 1.	1 0.78431 1.3	4 rgBT /Over 16
18	Abutilon indicum L.: a prospective weed for phytoremediation. Environmental Monitoring and Assessment, 2015, 187, 527.	1.3	14

MAYANK VARUN

#	Article	IF	CITATIONS
19	EDTA-Assisted Metal Uptake in Raphanus sativus L. and Brassica oleracea L.: Assessment of Toxicity and Food Safety. Bulletin of Environmental Contamination and Toxicology, 2019, 103, 490-495.	1.3	14
20	Bioassay as monitoring system for lead phytoremediation through Crinum asiaticum L Environmental Monitoring and Assessment, 2011, 178, 373-381.	1.3	13
21	Citrus Epicarp-Derived Biochar Reduced Cd Uptake and Ameliorates Oxidative Stress in Young Abelmoschus esculentus (L.) Moench (okra) Under Low Cd Stress. Bulletin of Environmental Contamination and Toxicology, 2018, 100, 827-833.	1.3	10
22	Effect of elevated CO2 on Vigna radiata and two weed species: yield, physiology and crop–weed interaction. Crop and Pasture Science, 2018, 69, 617.	0.7	9
23	Heavy Metal Toxicity and Antioxidative Response in Plants: An Overview. , 2018, , 77-106.		8
24	Utilization and Supplementation of Phytoextraction Potential of Some Terrestrial Plants in Metal-Contaminated Soils. , 2015, , 177-200.		6
25	Phytoremediation: Uptake and Role of Metal Transporters in Some Members of Brassicaceae. , 2016, , 453-468.		5
26	Ecological vulnerability assessment of trace metals in topsoil around a newly established metal scrap factory in southwestern Nigeria: geochemical, geospatial and exposure risk analyses. Rendiconti Lincei, 2016, 27, 573-588.	1.0	4
27	Engineered nanomaterial-mediated changes in the growth and development of common agricultural crops. , 2022, , 345-375.		2
28	Metal Contamination of Soils and Prospects of Phytoremediation in and Around River Yamuna: A Case Study from North-Central India. , 0, , .		1
29	Transfer of metals from crude oil impacted soils to some native wetland species, the Niger-delta, Nigeria: Implications for phytoremediation potentials. Journal of Agricultural Sciences (Belgrade),	0.1	Ο