Michael S Bank

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/93239/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Microplastic-Antibiotic Resistance Connection. Environmental Contamination Remediation and Management, 2022, , 311-322.	0.5	7
2	Ecotoxicological Impacts of Micro- and Nanoplastics in Terrestrial and Aquatic Environments. Environmental Contamination Remediation and Management, 2022, , 199-260.	0.5	5
3	The Microplastic Cycle: An Introduction to a Complex Issue. Environmental Contamination Remediation and Management, 2022, , 1-16.	0.5	5
4	Effects of microplastics on the terrestrial environment: A critical review. Environmental Research, 2022, 209, 112734.	3.7	112
5	Intergovernmental Panel on Blue Foods in Support of Sustainable Development and Nutritional Security. Environmental Science & Technology, 2022, 56, 5302-5305.	4.6	4
6	Nanoplastic stimulates metalloid leaching from historically contaminated soil via indirect displacement. Water Research, 2022, 218, 118468.	5.3	15
7	Seafood safety and environmental pollution in a changing environment. Environmental Pollution, 2022, , 119475.	3.7	0
8	Reimagining aquaculture in the Global South. Science, 2021, 372, 247-248.	6.0	3
9	Interactions between microplastics, pharmaceuticals and personal care products: Implications for vector transport. Environment International, 2021, 149, 106367.	4.8	276
10	Dual closed-loop chemical recycling support sustainable mitigation of plastic pollution. Matter, 2021, 4, 1095-1097.	5.0	6
11	Global Plastic Pollution Observation System to Aid Policy. Environmental Science & Technology, 2021, 55, 7770-7775.	4.6	59
12	Seafood safety data support the United Nations Sustainable Development Goals. Chemosphere, 2021, 277, 130221.	4.2	1
13	Rapid temporal decline of mercury in Greenland halibut (Reinhardtius hippoglossoides). Environmental Pollution, 2021, 289, 117843.	3.7	10
14	Co-occurrence of contaminants in marine fish from the North East Atlantic Ocean: Implications for human risk assessment. Environment International, 2021, 157, 106858.	4.8	17
15	Draft Genome Sequence of Multidrug-Resistant Pseudomonas protegens Strain 11HC2, Isolated from Marine Plastic Collected from the West Coast of Norway. Microbiology Resource Announcements, 2021, 10, .	0.3	5
16	Science-informed salmon conservation strategies. Science, 2021, 374, 700-700.	6.0	1
17	Fish for food and nutrition security in Ghana: Challenges and opportunities. Global Food Security, 2020, 26, 100380.	4.0	40
18	Defining Seafood Safety in the Anthropocene. Environmental Science & Technology, 2020, 54, 8506-8508.	4.6	20

2

MICHAEL S BANK

#	Article	IF	CITATIONS
19	Seafood Safety Revisited: Response to Comment on "Defining Seafood Safety in the Anthropocene― Environmental Science & Technology, 2020, 54, 12805-12806.	4.6	Ο
20	Microplastic's role in antibiotic resistance. Science, 2020, 369, 1315-1315.	6.0	74
21	Effects of seafood consumption on mercury exposure in Norwegian pregnant women: A randomized controlled trial. Environment International, 2020, 141, 105759.	4.8	15
22	The mercury science-policy interface: History, evolution and progress of the Minamata Convention. Science of the Total Environment, 2020, 722, 137832.	3.9	48
23	Mercury biogeochemical cycling: A synthesis of recent scientific advances. Science of the Total Environment, 2020, 737, 139619.	3.9	48
24	The Plastic Cycle: A Novel and Holistic Paradigm for the Anthropocene. Environmental Science & Technology, 2019, 53, 7177-7179.	4.6	157
25	Spatial distribution of mercury in seawater, sediment, and seafood from the Hardangerfjord ecosystem, Norway. Science of the Total Environment, 2019, 667, 622-637.	3.9	37
26	Mercury cycling and bioaccumulation in a changing environment. Science of the Total Environment, 2019, 670, 345.	3.9	3
27	Mercury bioaccumulation in temperate forest food webs associated with headwater streams. Science of the Total Environment, 2019, 665, 1125-1134.	3.9	35
28	Marine fog inputs appear to increase methylmercury bioaccumulation in a coastal terrestrial food web. Scientific Reports, 2019, 9, 17611.	1.6	17
29	Effects of geography and species variation on selenium and mercury molar ratios in Northeast Atlantic marine fish communities. Science of the Total Environment, 2019, 652, 1482-1496.	3.9	65
30	Fish Stocking as an Overlooked Driver of Methylmercury Cycling and Exposure in Aquatic Ecosystems. Environmental Science & Technology, 2018, 52, 6081-6083.	4.6	2
31	Importance of Integration and Implementation of Emerging and Future Mercury Research into the Minamata Convention. Environmental Science & Technology, 2016, 50, 2767-2770.	4.6	68
32	Assessing Metal Exposures in a Community near a Cement Plant in the Northeast U.S International Journal of Environmental Research and Public Health, 2015, 12, 952-969.	1.2	23
33	United Nations Environment Programme's Global Mercury Partnership: Science for successful implementation of the Minamata Convention. Environmental Toxicology and Chemistry, 2014, 33, 1199-1201.	2.2	10
34	Mercury environmental quality standard for biota in Europe: Opportunities and challenges. Integrated Environmental Assessment and Management, 2013, 9, 167-168.	1.6	8
35	Mercury in litterfall and upper soil horizons in forested ecosystems in Vermont, USA. Environmental Toxicology and Chemistry, 2012, 31, 1720-1729.	2.2	59

Ecotoxicology of Mercury in Fish and Wildlife: Recent Advances. , 2012, , 223-238.

MICHAEL S BANK

#	Article	IF	CITATIONS
37	Distribution of heavy metals in road dust along an urban-rural gradient in Massachusetts. Atmospheric Environment, 2011, 45, 2310-2323.	1.9	388
38	Mercury bioaccumulation, speciation, and influence on web structure in orbâ€weaving spiders from a forested watershed. Environmental Toxicology and Chemistry, 2011, 30, 1873-1878.	2.2	15
39	Temporal increase in organic mercury in an endangered pelagic seabird assessed by century-old museum specimens. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7466-7471.	3.3	96
40	Stable Isotope (N, C, Hg) Study of Methylmercury Sources and Trophic Transfer in the Northern Gulf of Mexico. Environmental Science & amp; Technology, 2010, 44, 1630-1637.	4.6	194
41	Adverse effects from environmental mercury loads on breeding common loons. Ecotoxicology, 2008, 17, 69-81.	1.1	326
42	Influence of Observers and Stream Flow on Northern Two-lined Salamander (Eurycea Bislineata) Tj ETQq0 0 0 rgBT Herpetology, 2007, 41, 325-329.	/Overlock 0.2	10 Tf 50 54 4
43	MERCURY BIOACCUMULATION AND TROPHIC TRANSFER IN SYMPATRIC SNAPPER SPECIES FROM THE GULF OF MEXICO. Ecological Applications, 2007, 17, 2100-2110.	1.8	79
44	MERCURY BIOACCUMULATION IN GREEN FROG (RANA CLAMITANS) AND BULLFROG (RANA CATESBEIANA) TADPOLES FROM ACADIA NATIONAL PARK, MAINE, USA. Environmental Toxicology and Chemistry, 2007, 26, 118.	2.2	36
45	Mercury Contamination of Biota from Acadia National Park, Maine: A Review. Environmental Monitoring and Assessment, 2007, 126, 105-115.	1.3	42
46	EFFECTS OF AGE, SEX, SEASON, AND SOCIAL DYNAMICS ON JUVENILE GUANACO SUBORDINATE BEHAVIOR. Journal of Mammalogy, 2006, 87, 41-47.	0.6	3
47	Forest harvesting and land-use conversion over two decades in Massachusetts. Forest Ecology and Management, 2006, 227, 31-41.	1.4	59
48	Population decline of northern dusky salamanders at Acadia National Park, Maine, USA. Biological Conservation, 2006, 130, 230-238.	1.9	37
49	Mercury Bioaccumulation in Northern Two-lined Salamanders from Streams in the Northeastern United States. Ecotoxicology, 2005, 14, 181-191.	1.1	45
50	Loss of foundation species: consequences for the structure and dynamics of forested ecosystems. Frontiers in Ecology and the Environment, 2005, 3, 479-486.	1.9	1,461
51	Forced dispersal of juvenile guanacos (Lama guanicoe): causes, variation, and fates of individuals dispersing at different times. Behavioral Ecology and Sociobiology, 2003, 54, 22-29.	0.6	35
52	Spatial distribution of guanaco mating sites in southern Chile: conservation implications. Biological Conservation, 2003, 112, 427-434.	1.9	47
53	Predation of guanacos (Lama guanicoe) by southernmost mountain lions (Puma concolor) during a historically severe winter in Torres del Paine National Park, Chile. Journal of Zoology, 2002, 258, 215-222.	0.8	33
54	Juvenile guanaco survival: management and conservation implications. Journal of Applied Ecology, 1999, 36, 937-945.	1.9	49