Javier Cotignola

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9323537/publications.pdf

Version: 2024-02-01

566801 500791 54 881 15 28 citations h-index g-index papers 55 55 55 1692 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Exploiting Interdata Relationships in Prostate Cancer Proteomes: Clinical Significance of HO-1 Interactors. Antioxidants, 2022, 11, 290.	2.2	2
2	Bone Progenitors Pull the Strings on the Early Metabolic Rewiring Occurring in Prostate Cancer Cells. Cancers, 2022, 14, 2083.	1.7	5
3	The expression of YWHAZ and NDRG1 predicts aggressive outcome in human prostate cancer. Communications Biology, 2021, 4, 103.	2.0	13
4	Analysis workflow of publicly available RNA-sequencing datasets. STAR Protocols, 2021, 2, 100478.	0.5	9
5	HO-1 Modulates Aerobic Glycolysis through LDH in Prostate Cancer Cells. Antioxidants, 2021, 10, 966.	2.2	9
6	Prostate cancer castrate resistant progression usage of non-canonical androgen receptor signaling and ketone body fuel. Oncogene, 2021, 40, 6284-6298.	2.6	13
7	Heme Oxygenase-1 Is a Pivotal Modulator of Bone Turnover and Remodeling: Molecular Implications for Prostate Cancer Bone Metastasis. Antioxidants and Redox Signaling, 2020, 32, 1243-1258.	2.5	14
8	SARS-CoV-2 Infection Boosts MX1 Antiviral Effector in COVID-19 Patients. IScience, 2020, 23, 101585.	1.9	85
9	HO-1 Interactors Involved in the Colonization of the Bone Niche: Role of ANXA2 in Prostate Cancer Progression. Biomolecules, 2020, 10, 467.	1.8	13
10	Myxovirus Resistance Protein 1 (MX1), a Novel HO-1 Interactor, Tilts the Balance of Endoplasmic Reticulum Stress towards Pro-Death Events in Prostate Cancer. Biomolecules, 2020, 10, 1005.	1.8	5
11	Heme Oxygenase 1 Impairs Glucocorticoid Receptor Activity in Prostate Cancer. International Journal of Molecular Sciences, 2019, 20, 1006.	1.8	11
12	Genetics and genomic medicine in Argentina. Molecular Genetics & Enomic Medicine, 2019, 7, e00571.	0.6	3
13	Game-changing restraint of Ros-damaged phenylalanine, upon tumor metastasis. Cell Death and Disease, 2018, 9, 140.	2.7	19
14	Abstract A064: Mass spectrometry-based proteomics study makes a polipoprotein E a potential risk factor for prostate cancer. , 2018, , .		0
15	Abstract A058: Integrative prostate cancer tissue proteomics dissects clear and distinct proteomes for human prostate cancer and benign prostatic hyperplasia., 2018,,.		O
16	Abstract B062: Proteomic characterization of the secretome from prostate cancer and bone progenitor cell coculture. , 2018, , .		0
17	Abstract A019: Heme-oxygenase 1 drives the metabolic fate in prostate cancer., 2018,,.		O
18	Abstract B080: Heme-oxygenase 1 negatively regulates interferon inducible antiviral (mx1) in prostate cancer., 2018,,.		0

#	Article	IF	CITATIONS
19	Functional interaction between co-expressed MAGE-A proteins. PLoS ONE, 2017, 12, e0178370.	1.1	11
20	Non-myogenic tumors display altered expression of dystrophin (DMD) and a high frequency of genetic alterations. Oncotarget, 2017, 8, 145-155.	0.8	26
21	Improving risk stratification of patients with childhood acute lymphoblastic leukemia: Glutathione-S-Transferases polymorphisms are associated with increased risk of relapse. Oncotarget, 2017, 8, 110-117.	0.8	13
22	Abstract 3541: Metabolic signature characterization in prostate cancer mediated by heme-oxygenase $1., 2017,$		0
23	Heme oxygenase-1 in the forefront of a multi-molecular network that governs cell–cell contacts and filopodia-induced zippering in prostate cancer. Cell Death and Disease, 2016, 7, e2570-e2570.	2.7	30
24	Abstract 5058: Hitting the brakes on the migratory capacity of tumoral cells: Targeting key regulators of actin dynamics in prostate cancer. , 2016 , , .		0
25	Abstract 5021: Glutathione-S-transferases polymorphisms are associated with increased risk of relapse in pediatric patients with acute lymphoblastic leukemia. , 2016, , .		0
26	Abstract 4717: Clinical implications for m-tyrosine, an isomer of p-tyrosine, for the treatment of aggressive prostate tumors. , 2016 , , .		0
27	MC1R gene variants and non-melanoma skin cancer: a pooled-analysis from the M-SKIP project. British Journal of Cancer, 2015, 113, 354-363.	2.9	43
28	Low Doses of CPS49 and Flavopiridol Combination as Potential Treatment for Advanced Prostate Cancer. Current Pharmaceutical Biotechnology, 2015, 16, 553-563.	0.9	3
29	Abstract 5199: A second round for concomitant resistance in human cancer: A restraint upon metastasis., 2015,,.		0
30	Prostate Tumor Growth Is Impaired by CtBP1 Depletion in High-Fat Diet–Fed Mice. Clinical Cancer Research, 2014, 20, 4086-4095.	3.2	31
31	Molecular diagnosis of dystrophinopathies using a multiâ€ŧechnique analysis algorithm. Muscle and Nerve, 2014, 49, 249-256.	1.0	5
32	Heme-oxygenase-1 implications in cell morphology and the adhesive behavior of prostate cancer cells. Oncotarget, 2014, 5, 4087-4102.	0.8	53
33	Abstract LB-43: Unveiling the molecular significance of HO-1 and muskelin interaction: two masterminds behind the morphology and the adhesive behavior of prostate cancer cells. , 2014, , .		0
34	Abstract 247: CtBP1 is implicated in prostate tumor development in a metabolic syndrome-like disease in vivomodel., 2014,,.		0
35	Glutathione-S-transferase (GST) polymorphisms are associated with relapse after radical prostatectomy. Prostate Cancer and Prostatic Diseases, 2013, 16, 28-34.	2.0	12
36	Abstract 3697: Molecular link that associates high fat diet and prostate tumor growth, 2013,,.		0

#	Article	IF	Citations
37	Investigation of the Effect of MDM2 SNP309 and TP53 Arg72Pro Polymorphisms on the Age of Onset of Cutaneous Melanoma. Journal of Investigative Dermatology, 2012, 132, 1471-1478.	0.3	11
38	Dynamic Coregulatory Complex Containing BRCA1, E2F1 and CtIP Controls ATM Transcription. Cellular Physiology and Biochemistry, 2012, 30, 596-608.	1.1	13
39	Abstract C26: The polymorphism in GSTP1 codon 105 might be associated with biochemical recurrence in Argentine localized prostate cancer patients treated with radical prostatectomy. Cancer Research, 2012, 72, C26-C26.	0.4	0
40	Abstract 1312: ATM transcriptional regulation mediated by BRCA1/E2F1 axis controls DNA damage response in prostate cancer. , 2012, , .		0
41	Abstract 2340: CPS49 and Flavopiridol: a new selective drug combination for advanced prostate cancer., 2012,,.		0
42	Sun exposure, vitamin D receptor polymorphisms Fokl and Bsml and risk of multiple primary melanoma. Cancer Epidemiology, 2011, 35, e105-e110.	0.8	28
43	BRCA1 Loss Induces GADD153-Mediated Doxorubicin Resistance in Prostate Cancer. Molecular Cancer Research, 2011, 9, 1078-1090.	1.5	32
44	Abstract 2160: Critical BRCA1 role as a transcriptional regulator in prostate cancer DNA damage response. , $2011, \dots$		0
45	Associations of Cumulative Sun Exposure and Phenotypic Characteristics with Histologic Solar Elastosis. Cancer Epidemiology Biomarkers and Prevention, 2010, 19, 2932-2941.	1.1	45
46	Evaluation of the Clonal Origin of Multiple Primary Melanomas Using Molecular Profiling. Journal of Investigative Dermatology, 2009, 129, 1972-1982.	0.3	27
47	Expression of p16INK4A gene in human pituitary tumours. Pituitary, 2008, 11, 71-75.	1.6	13
48	Matrix Metalloproteinase-9 (MMP-9) polymorphisms in patients with cutaneous malignant melanoma. BMC Medical Genetics, 2007, 8, 10.	2.1	44
49	Functional polymorphisms in the promoter regions of MMP2 and MMP3 are not associated with melanoma progression. Journal of Negative Results in BioMedicine, 2007, 6, 9.	1.4	13
50	CDKN2A Germline Mutations in Individuals with Cutaneous Malignant Melanoma. Journal of Investigative Dermatology, 2007, 127, 1234-1243.	0.3	50
51	A design for cancer case–control studies using only incident cases: experience with the GEM study of melanoma. International Journal of Epidemiology, 2006, 35, 756-764.	0.9	67
52	Polymorphisms in nucleotide excision repair genes and risk of multiple primary melanoma: the Genes Environment and Melanoma Study. Carcinogenesis, 2006, 27, 610-618.	1.3	92
53	NF2 Tumor Suppressor Gene: A Comprehensive and Efficient Detection of Somatic Mutations by Denaturing HPLC and Microarray-CGH. NeuroMolecular Medicine, 2003, 3, 41-52.	1.8	12
54	Direct Deletion Analysis in Two Duchenne Muscular Dystrophy Symptomatic Females Using Polymorphic Dinucleotide (CA) _n Loci within the Dystrophin Gene. BMB Reports, 2003, 36, 179-184.	1,1	6