Zhiqiang Liang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9323479/publications.pdf Version: 2024-02-01

7HIOLANC LIANC

#	Article	IF	CITATIONS
1	Supersensitive detection of explosives by recyclable AIE luminogen-functionalized mesoporous materials. Chemical Communications, 2012, 48, 7167.	4.1	214
2	A luminescent cadmium metal–organic framework for sensing of nitroaromatic explosives. Dalton Transactions, 2015, 44, 230-236.	3.3	137
3	A novel photo- and hydrochromic europium metal–organic framework with good anion sensing properties. Journal of Materials Chemistry C, 2017, 5, 8999-9004.	5.5	133
4	A novel (3,3,6)-connected luminescent metal–organic framework for sensing of nitroaromatic explosives. Dalton Transactions, 2013, 42, 5508.	3.3	115
5	A microporous lanthanum metal–organic framework as a bi-functional chemosensor for the detection of picric acid and Fe ³⁺ ions. Dalton Transactions, 2015, 44, 13340-13346.	3.3	114
6	Nitrogen-Doped Hierarchical Porous Carbon Nanowhisker Ensembles on Carbon Nanofiber for High-Performance Supercapacitors. ACS Sustainable Chemistry and Engineering, 2014, 2, 1525-1533.	6.7	99
7	Luminescent microporous organic polymers containing the 1,3,5-tri(4-ethenylphenyl)benzene unit constructed by Heck coupling reaction. Polymer Chemistry, 2013, 4, 1932.	3.9	97
8	A 4 + 4 strategy for synthesis of zeolitic metal–organic frameworks: an indium-MOF with SOD topology as a light-harvesting antenna. Chemical Communications, 2013, 49, 11155.	4.1	96
9	Multifunctional Zinc Metal–Organic Framework Based on Designed H ₄ TCPP Ligand with Aggregation-Induced Emission Effect: CO ₂ Adsorption, Luminescence, and Sensing Property. Crystal Growth and Design, 2017, 17, 2090-2096.	3.0	84
10	Metal–organic frameworks based on bipyridinium carboxylate: photochromism and selective vapochromism. Journal of Materials Chemistry C, 2017, 5, 2084-2089.	5.5	81
11	A multifunctional Zr(<scp>iv</scp>)-based metal–organic framework for highly efficient elimination of Cr(<scp>vi</scp>) from the aqueous phase. Journal of Materials Chemistry A, 2019, 7, 16833-16841.	10.3	80
12	Postâ€cationic Modification of a Pyrimidineâ€Based Conjugated Microporous Polymer for Enhancing the Removal Performance of Anionic Dyes in Water. Chemistry - A European Journal, 2018, 24, 7480-7488.	3.3	71
13	A Zwitterionic Ligandâ€Based Cationic Metalâ€Organic Framework for Rapidly Selective Dye Capture and Highly Efficient Cr ₂ O ₇ ^{2â^'} Removal. Chemistry - A European Journal, 2018, 24, 2718-2724.	3.3	69
14	A one-pot synthetic strategy via tandem Suzuki–Heck reactions for the construction of luminescent microporous organic polymers. Polymer Chemistry, 2014, 5, 471-478.	3.9	67
15	Multifunctional conjugated microporous polymers with pyridine unit for efficient iodine sequestration, exceptional tetracycline sensing and removal. Journal of Hazardous Materials, 2020, 387, 121949.	12.4	66
16	Novel photo- and/or thermochromic MOFs derived from bipyridinium carboxylate ligands. Inorganic Chemistry Frontiers, 2016, 3, 814-820.	6.0	59
17	One-Step Carbonization Synthesis of Hollow Carbon Nanococoons with Multimodal Pores and Their Enhanced Electrochemical Performance for Supercapacitors. ACS Applied Materials & Interfaces, 2014, 6, 2192-2198.	8.0	57
18	Design and synthesis of a multifunctional porous N-rich polymer containing <i>s</i> -triazine and Tr¶ger's base for CO ₂ adsorption, catalysis and sensing. Polymer Chemistry, 2018, 9, 2643-2649.	3.9	57

#	Article	IF	CITATIONS
19	A Porous Organic Polymer Nanotrap for Efficient Extraction of Palladium. Angewandte Chemie - International Edition, 2020, 59, 19618-19622.	13.8	57
20	Enhancing Gas Sorption and Separation Performance via Bisbenzimidazole Functionalization of Highly Porous Covalent Triazine Frameworks. ACS Applied Materials & Interfaces, 2018, 10, 26678-26686.	8.0	52
21	Octavinylsilsesquioxane-based luminescent nanoporous inorganic–organic hybrid polymers constructed by the Heck coupling reaction. Polymer Chemistry, 2015, 6, 917-924.	3.9	51
22	CO ₂ adsorption and catalytic application of imidazole ionic liquid functionalized porous organic polymers. Polymer Chemistry, 2017, 8, 1833-1839.	3.9	51
23	Structures and properties of lanthanide metal–organic frameworks based on a 1,2,3-triazole-containing tetracarboxylate ligand. Dalton Transactions, 2012, 41, 12790.	3.3	50
24	Water Stable Metal–Organic Framework Based on Phosphono-containing Ligand as Highly Sensitive Luminescent Sensor toward Metal Ions. Crystal Growth and Design, 2018, 18, 7683-7689.	3.0	47
25	Palladium-Catalyzed Double Annulations To Construct Multisubstituted Benzodifurans. Journal of Organic Chemistry, 2007, 72, 9219-9224.	3.2	46
26	Conformational Supramolecular Isomerism in Two-Dimensional Fluorescent Coordination Polymers Based on Flexible Tetracarboxylate Ligand. Crystal Growth and Design, 2013, 13, 4092-4099.	3.0	46
27	Ultrahigh volatile iodine capture by conjugated microporous polymer based on <i>N</i> , <i>N</i> , <i>N</i> , <i>N</i> ′, <i>N</i> â8€²-tetraphenyl-1,4-phenylenediamine. Polymer Chemistry, 2019, 10, 2608-2615.	3.9	45
28	Conjugated microporous polymers based on biphenylene for CO ₂ adsorption and luminescence detection of nitroaromatic compounds. New Journal of Chemistry, 2018, 42, 9482-9487.	2.8	44
29	A facile strategy for fabricating Agl–MIL-53(Fe) composites: superior interfacial contact and enhanced visible light photocatalytic performance. New Journal of Chemistry, 2018, 42, 3799-3807.	2.8	44
30	Alendronate functionalized mesoporous hydroxyapatite nanoparticles for drug delivery. Materials Research Bulletin, 2013, 48, 2201-2204.	5.2	42
31	Design and Synthesis of Two Porous Metal–Organic Frameworks with <i>nbo</i> and <i>agw</i> Topologies Showing High CO ₂ Adsorption Capacity. Inorganic Chemistry, 2013, 52, 10720-10722.	4.0	41
32	Synthesis, Structure, and Gas Sorption Studies of a Three-Dimensional Metalâ^'Organic Framework with NbO Topology. Crystal Growth and Design, 2010, 10, 3405-3409.	3.0	40
33	Molecular Expansion for Constructing Porous Organic Polymers with High Surface Areas and Wellâ€Đefined Nanopores. Angewandte Chemie - International Edition, 2020, 59, 19487-19493.	13.8	38
34	AIE luminogen bridged hollow hydroxyapatite nanocapsules for drug delivery. Dalton Transactions, 2013, 42, 9877.	3.3	37
35	Lanthanide metal–organic frameworks based on a 1,2,3-triazole-containing tricarboxylic acid ligand for luminescence sensing of metal ions and nitroaromatic compounds. RSC Advances, 2016, 6, 57828-57834.	3.6	36
36	Multifunctional porous Tröger's base polymers with tetraphenylethene units: CO ₂ adsorption, luminescence and sensing properties. Polymer Chemistry, 2017, 8, 4842-4848.	3.9	35

#	Article	IF	CITATIONS
37	[Zn(HPO3)(C11N2O2H12)] and [Zn3(H2O)(PO4)(HPO4)(C6H9N3O2)2 (C6H8N3O2)]: homochiral zinc phosphite/phosphate networks with biofunctional amino acids. Dalton Transactions, 2010, 39, 5439.	3.3	33
38	Novel D-Ï€-A conjugated microporous polymer as visible light-driven oxidase mimic for efficient colorimetric detection of glutathione. Sensors and Actuators B: Chemical, 2021, 326, 128808.	7.8	32
39	Highly Selective Synthesis of Bicyclic Quinolizidine Alkaloids and Their Analogues via Double RCM Reaction ofN-Alkynyl-N-(1,ω)-alkadienyl Acrylamides. Journal of Organic Chemistry, 2004, 69, 6305-6309.	3.2	31
40	Under-liquid dual superlyophobic nanofibrous polymer membranes achieved by coating thin-film composites: a design principle. Chemical Science, 2019, 10, 6382-6389.	7.4	31
41	Solvent-induced construction of two zinc metal–organic frameworks for highly selective detection of nitroaromatic explosives. CrystEngComm, 2016, 18, 4102-4108.	2.6	30
42	Enhancing CO2 Adsorption and Separation Properties of Aluminophosphate Zeolites by Isomorphous Heteroatom Substitutions. ACS Applied Materials & Interfaces, 2018, 10, 43570-43577.	8.0	30
43	Indium oxide-black phosphorus composites for ultrasensitive nitrogen dioxide sensing at room temperature. Sensors and Actuators B: Chemical, 2020, 308, 127650.	7.8	30
44	A new lanthanide metal-organic framework with (3,6)-connected topology based on novel tricarboxylate ligand. Inorganic Chemistry Communication, 2011, 14, 978-981.	3.9	29
45	Different nanostructured tungsten oxides synthesized by facile solvothermal route for chlorine gas sensing. Sensors and Actuators B: Chemical, 2018, 275, 306-311.	7.8	28
46	Silsesquioxane–Carbazole-Corbelled Hybrid Porous Polymers with Flexible Nanopores for Efficient CO ₂ Conversion and Luminescence Sensing. ACS Applied Polymer Materials, 2020, 2, 189-197.	4.4	28
47	Photo-responsive oxidase mimic of conjugated microporous polymer for constructing a pH-sensitive fluorescent sensor for bio-enzyme sensing. Sensors and Actuators B: Chemical, 2020, 316, 128157.	7.8	27
48	Different Co3O4 mesostructures synthesised by templating with KIT-6 and SBA-15 via nanocasting route and their sensitivities toward ethanol. Sensors and Actuators B: Chemical, 2016, 235, 39-45.	7.8	26
49	Two zinc metal–organic framework isomers based on pyrazine tetracarboxylic acid and dipyridinylbenzene for adsorption and separation of CO ₂ and light hydrocarbons. Dalton Transactions, 2020, 49, 1135-1142.	3.3	25
50	Double annulations of dihydroxy- and diacetoxy-dialkynylbenzenes. An efficient construction of benzodifurans. Tetrahedron, 2007, 63, 12877-12882.	1.9	24
51	A lithiumâ€organic framework as a fluorescent sensor for detecting aluminum (III) ion. Applied Organometallic Chemistry, 2019, 33, e5044.	3.5	21
52	Fabrication of AgI/MILâ€53(Fe) Composites with Enhanced Photocatalytic Activity for Rhodamine B Degradation under Visible Light Irradiation. Applied Organometallic Chemistry, 2018, 32, e4325.	3.5	20
53	A hexanuclear cluster based metal-organic framework for Fe3+ sensing. Inorganic Chemistry Communication, 2018, 91, 108-111.	3.9	19
54	Increasing the surface area and CO ₂ uptake of conjugated microporous polymers <i>via</i> a post-knitting method. Materials Chemistry Frontiers, 2021, 5, 5319-5327.	5.9	17

#	Article	IF	CITATIONS
55	A zwitterionic ligand-based water-stable metal–organic framework showing photochromic and Cr(<scp>vi</scp>) removal properties. Dalton Transactions, 2020, 49, 10613-10620.	3.3	16
56	An yttrium-organic framework based on a hexagonal prism second building unit for luminescent sensing of antibiotics and highly effective CO ₂ fixation. Inorganic Chemistry Frontiers, 2022, 9, 391-400.	6.0	16
57	Nickel Nanoparticles Encapsulated in Microporous Graphenelike Carbon (Ni@MGC) as Catalysts for CO ₂ Methanation. Industrial & Engineering Chemistry Research, 2019, 58, 20536-20542.	3.7	15
58	A stable pillared metal–organic framework constructed by H 4 TCPP ligand as luminescent sensor for selective detection of TNP and Fe 3+ ions. Applied Organometallic Chemistry, 2019, 33, e5243.	3.5	15
59	Preparation of benzodiimidazole-containing covalent triazine frameworks for enhanced selective CO2 capture and separation. Microporous and Mesoporous Materials, 2019, 276, 213-222.	4.4	15
60	A novel decanuclear Co(ii) cluster with adamantane-like metallic skeleton supported by 8-hydroxyquinoline and in situ formed CO32â^ anions. Dalton Transactions, 2012, 41, 6242.	3.3	14
61	Synthesis and characterization of chiral zeolite ITQ-37 by using achiral organic structure-directing agent. Microporous and Mesoporous Materials, 2012, 164, 88-92.	4.4	14
62	Fast synthesis of SSZ-13 zeolite by steam-assisted crystallization method. Microporous and Mesoporous Materials, 2020, 293, 109789.	4.4	14
63	Post-synthetic modification of conjugated microporous polymer with imidazolium for highly efficient anionic dyes removal from water. Separation and Purification Technology, 2022, 284, 120245.	7.9	14
64	Four-connected metal–organic frameworks constructed by tetracarboxylate acid-based ligands. Inorganic Chemistry Frontiers, 2014, 1, 478.	6.0	13
65	Metal-assisted synthesis of salen-based porous organic polymer for highly efficient fixation of CO ₂ into cyclic carbonates. Inorganic Chemistry Frontiers, 2022, 9, 1208-1216.	6.0	13
66	An efficient synthesis of fused tricycles with a benzene core via intramolecular double ring-closing enyne metathesis. Tetrahedron, 2007, 63, 977-985.	1.9	11
67	Molecule-guided synthesis of conjugated microporous polymers with imidazole derivative units for efficient capture of volatile iodine. Microporous and Mesoporous Materials, 2022, 336, 111871.	4.4	11
68	Germanosilicate zeolite ITQ-44 with extra-large 18-rings synthesized using a commercial quaternary ammonium as a structure-directing agent. RSC Advances, 2015, 5, 63209-63214.	3.6	10
69	A Porous Organic Polymer Nanotrap for Efficient Extraction of Palladium. Angewandte Chemie, 2020, 132, 19786-19790.	2.0	10
70	A new porous 2D copper(II) metal–organic framework for selective adsorption of CO2 over N2. Inorganic Chemistry Communication, 2013, 38, 104-107.	3.9	9
71	Single-Crystal to Single-Crystal Transformation of Metal–Organic Framework Nanoparticles for Encapsulation and pH-Stimulated Release of Camptothecin. ACS Applied Nano Materials, 2021, 4, 7191-7198.	5.0	9
72	Intramolecular double or triple Suzuki coupling reaction of substituted di- or tribromobenzenes. An easy synthesis of fused tri- or tetracycles with a benzene core. Journal of Organometallic Chemistry, 2005, 690, 5389-5395.	1.8	8

#	Article	IF	CITATIONS
73	Application of response surface methodology for optimization of nano-TiO2 preparation using modified sol–gel method. Journal of Sol-Gel Science and Technology, 2013, 67, 394-405.	2.4	8
74	Synthesis of organic-functionalized SAPO-5 with variable content and type of organic Si in the H2O/C2H5OH system. Materials Letters, 2013, 101, 103-106.	2.6	8
75	Post-crosslinking of conjugated microporous polymers using vinyl polyhedral oligomeric silsesquioxane for enhancing surface areas and organic micropollutants removal performance from water. Journal of Colloid and Interface Science, 2022, 615, 697-706.	9.4	8
76	An inorganic–organic hybrid compound built from polyoxovanadate cluster and Mn (II) complexes. Inorganic Chemistry Communication, 2011, 14, 1640-1643.	3.9	6
77	Boosting selective C2H2/CH4, C2H4/CH4 and CO2/CH4 adsorption performance via 1,2,3-triazole functionalized triazine-based porous organic polymers. Chinese Journal of Chemical Engineering, 2022, 42, 64-72.	3.5	6
78	Synthesis, structure and gas adsorption properties of a stable microporous Cu-based metal–organic framework assembled from a T-shaped pyridyl dicarboxylate ligand. RSC Advances, 2017, 7, 17697-17703.	3.6	5
79	One-pot Suzuki-Heck Reaction to Construct Luminescent Microporous Organic Polymers Based on 4-Vinylphenylbororic Acid. Acta Chimica Sinica, 2015, 73, 611.	1.4	3
80	Multifunctional Viologen-Derived Supramolecular Network with Photo/Vapochromic and Proton Conduction Properties. Molecules, 2021, 26, 6209.	3.8	3
81	Tris(2,2′-bi-1H-imidazole-κ2N3,N3′)cobalt(II) hydrogen phosphate. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, m1399-m1399.	0.2	2
82	Molecular Expansion for Constructing Porous Organic Polymers with High Surface Areas and Wellâ€Đefined Nanopores. Angewandte Chemie, 2020, 132, 19655-19661.	2.0	1
83	Rücktitelbild: A Porous Organic Polymer Nanotrap for Efficient Extraction of Palladium (Angew.) Tj ETQq1 1 0.	784314 rg 2.0	;BT_/Overlock