Alexander A Bredikhin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/932334/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Crystal Structure of Chiral Drug Prenalterol and Its Precursor Prone to Spontaneous Resolution. Symmetry, 2022, 14, 1150.	2.2	3
2	Chirality, Gelation Ability and Crystal Structure: Together or Apart? Alkyl Phenyl Ethers of Glycerol as Simple LMWGs. Symmetry, 2021, 13, 732.	2.2	4
3	Crystal Landscape of Chiral Drug Chlorphenesin and Its Structural Analogues: Polymorphism of Racemic and Enantiopure Samples, Metastable and Stable Racemic Conglomerates, Diverse in Unity Crystal Motifs. Crystal Growth and Design, 2021, 21, 3211-3224.	3.0	3
4	Chirality-dependent supramolecular synthons based on the 1,3-oxazolidin-2-one framework: chiral drugs mephenoxalone, metaxalone and 114 other examples. CrystEngComm, 2020, 22, 7252-7261.	2.6	8
5	Stereoselective Crystallization of Chiral 3,4-Dimethylphenyl Glycerol Ether Complicated by Plurality of Crystalline Modifications. Crystals, 2020, 10, 201.	2.2	5
6	Effective synthesis of non-racemic prenalterol based on spontaneous resolution of 3-(4-hydroxyphenoxy)propane-1,2-diol. Mendeleev Communications, 2019, 29, 198-199.	1.6	2
7	Solid Phase Behavior, Polymorphism, and Crystal Structure Features of Chiral Drug Metaxalone. Crystal Growth and Design, 2018, 18, 6627-6639.	3.0	11
8	Synthesis, phase behavior and absolute configuration of β-adrenoblocker bupranolol and related compounds. Journal of Molecular Structure, 2018, 1173, 157-165.	3.6	3
9	Crystallization of Chiral <i>para</i> - <i>n</i> -Alkylphenyl Glycerol Ethers: Phase Diversity and Impressive Predominance of Homochiral Guaifenesin-Like Supramolecular Motif. Crystal Growth and Design, 2018, 18, 3980-3987.	3.0	9
10	Synthesis and crystal structure of (S)-pindolol. Tetrahedron: Asymmetry, 2017, 28, 442-446.	1.8	4
11	Stereoselective Crystallization as a Basis for Singleâ€Enantiomer Drug Production. Chemical Engineering and Technology, 2017, 40, 1211-1220.	1.5	24
12	Intricate Phase Behavior and Crystal Structure Features of Chiral <i>para</i> -Methoxyphenyl Glycerol Ether Forming Continuous and Partial Solid Solutions. Crystal Growth and Design, 2017, 17, 271-283.	3.0	22
13	Crystallization features and spontaneous resolution of 3-(2,6-dimethoxyphenoxy)propane-1,2-diol: The case of stable conglomerate and metastable solid solution. Journal of Molecular Structure, 2017, 1144, 443-450.	3.6	2
14	Synthesis, crystal structure, and absolute configuration of the enantiomers of chiral drug xibenolol hydrochloride. Tetrahedron: Asymmetry, 2017, 28, 1359-1366.	1.8	4
15	Spontaneous Resolution of Chiral 3-(2,3-Dimethylphenoxy)propane-1,2-diol under the Circumstances of an Unusual Diversity of Racemic Crystalline Modifications. Crystal Growth and Design, 2017, 17, 4196-4206.	3.0	8
16	Synthesis of all of the stereoisomers of β3-adrenoceptor antagonist SR 59230 based on the spontaneous resolution of 3-(2-ethylphenoxy)propane-1,2-diol. Tetrahedron: Asymmetry, 2016, 27, 467-474.	1.8	5
17	The effective direct resolution procedure for the chiral drug bevantolol hydrochloride. Tetrahedron: Asymmetry, 2016, 27, 397-403.	1.8	2
18	New example of spontaneous resolution among aryl glycerol ethers: 3-(2,6-dichlorophenoxy)propane-1,2-diol. Journal of Molecular Structure, 2016, 1118, 172-178.	3.6	1

#	Article	IF	CITATIONS
19	Conglomerate formative precursor of chiral drug timolol: 3-(4-Morpholino-1,2,5-thiadiazol-3-yloxy)-propane-1,2-diol. Journal of Molecular Structure, 2015, 1088, 111-117.	3.6	10
20	4-Benzoylamino-3-hydroxybutyric Acid, Historically First "Anomalous Racemate― Reinvestigation. Crystal Growth and Design, 2015, 15, 1362-1373.	3.0	5
21	From racemic epichlorohydrin to a single enantiomer of the drug timolol maleate. Tetrahedron: Asymmetry, 2015, 26, 797-801.	1.8	4
22	Stereoselective crystallization of 3-(2,6-dimethylphenoxy)propane-1,2-diol: preparation of the single-enantiomer drug mexiletine. Tetrahedron: Asymmetry, 2015, 26, 577-583.	1.8	16
23	Crystal structure of chiral ortho-alkyl phenyl ethers of glycerol: true racemic compound, normal, false and anomalous conglomerates within the single five-membered family. CrystEngComm, 2014, 16, 6716.	2.6	23
24	A rare case of facial selectivity inversion for Sharpless asymmetric dihydroxylation in a series of structurally homogeneous substrates: synthesis of non-racemic 3-(nitrophenoxy)-propane-1,2-diols. Tetrahedron: Asymmetry, 2014, 25, 1015-1021.	1.8	8
25	Solubility and Some Crystallization Properties of Conglomerate Forming Chiral Drug Guaifenesin in Water. Journal of Pharmaceutical Sciences, 2014, 103, 3176-3182.	3.3	14
26	Lariat ethers in the chiral recognition of amino acid esters:electrospray ionization mass spectrometry investigation. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2014, 80, 417-426.	1.6	5
27	Crystallization Features of the Chiral Drug Timolol Precursor: The Rare Case of Conglomerate with Partial Solid Solutions. Crystal Growth and Design, 2014, 14, 1676-1683.	3.0	29
28	Mass spectrometric investigation of the side-arm lariat effect of ortho- and para-methoxyphenoxymethyl-15-crown-5 in the gas phase. Journal of Analytical Chemistry, 2013, 68, 1178-1182.	0.9	4
29	Phase behavior and crystal structure of 3-(1-naphthyloxy)- and 3-(4-indolyloxy)-propane-1,2-diol, synthetic precursors of chiral drugs propranolol and pindolol. Journal of Molecular Structure, 2013, 1045, 104-111.	3.6	7
30	Chiral para-alkyl phenyl ethers of glycerol: synthesis and testing of chirality driven crystallization, liquid crystal, and gelating properties. Tetrahedron: Asymmetry, 2013, 24, 807-816.	1.8	29
31	Crystallographic evidence of side-arm lariat effect in the series of chiral ortho- and para-methoxyphenoxymethyl-15-crown-5 complexes with sodium perchlorate. Journal of Molecular Structure, 2013, 1032, 176-184.	3.6	12
32	Crystal structure and phase behavior of the tolyl glycerol ethers. From the conglomerate former to the chirality-driven nanogelator. CrystEngComm, 2012, 14, 211-222.	2.6	20
33	Crystallization of chiral compounds: thermodynamical, structural and practical aspects. Mendeleev Communications, 2012, 22, 171-180.	1.6	42
34	Chiral drugtimolol maleate as a continuous solid solution: Thermochemical and single crystal X-ray evidence. CrystEngComm, 2012, 14, 648-655.	2.6	35
35	Liesegang ring formation during the supramolecular hydrogelation of the chiral drug methocarbamol. Mendeleev Communications, 2011, 21, 144-145.	1.6	9
36	Synthesis and extraction properties of some lariat ethers derived from the spontaneously resolved guaifenesin, 3-(2-methoxyphenoxy)propane-1,2-diol. Arkivoc, 2011, 2011, 16-32.	0.5	6

#	Article	IF	CITATIONS
37	Absolute configuration and crystal packing chirality for three conglomerate-forming ortho-halogen substituted phenyl glycerol ethers. Journal of Molecular Structure, 2010, 975, 323-329.	3.6	11
38	Chirality driven crystallization behavior of ortho, meta, and para-cyanophenyl glycerol ethers. Journal of Molecular Structure, 2010, 981, 163-172.	3.6	3
39	Synthesis and solid state properties of the 4-naphthyloxymethyl-2,2-dioxo-1,3,2-dioxathiolane, cyclic sulfate not available through sulfite oxidation procedure. Journal of Molecular Structure, 2010, 984, 339-343.	3.6	0
40	p-Tolyl glycerol ether: is it possible to find more simple molecular organogelator with pronounced chirality driven properties?. Chemical Communications, 2010, 46, 3523.	4.1	21
41	Racemic compound against racemic conglomerate formation: The crystal properties of allylbenzylmethylphenylphosphonium iodide as compared with the nitrogen analogue. Chirality, 2009, 21, 637-641.	2.6	4
42	From racemic compounds through metastable to stable racemic conglomerates: crystallization features of chiral halogen and cyano monosubstituted phenyl glycerol ethers. Tetrahedron: Asymmetry, 2009, 20, 2130-2136.	1.8	20
43	Absolute configuration and crystal packing for three chiral drugs prone to spontaneous resolution: Guaifenesin, methocarbamol and mephenesin. Journal of Molecular Structure, 2009, 920, 377-382.	3.6	31
44	New example of spontaneous resolution among aryl glycerol ethers: 3-(2-hydroxyphenoxy)propane-1,2-diol. Mendeleev Communications, 2009, 19, 208-210.	1.6	3
45	One more chiral drug prone to spontaneous resolution: Binary phase diagram, absolute configuration, and crystal packing of bevantolol hydrochloride. Journal of Molecular Structure, 2009, 936, 171-176.	3.6	7
46	4(2)-Methoxyphenyl glycerol ethers in the synthesis of nonracemic di-O,O-acylglycerols. Russian Chemical Bulletin, 2008, 57, 2320-2323.	1.5	4
47	First examples of the cocrystallization of diastereomers of chiral phosphorus compounds. Structural Chemistry, 2008, 19, 873-878.	2.0	8
48	Three different types of chiralityâ€driven crystallization within the series of uniformly substituted phenyl glycerol ethers. Chirality, 2008, 20, 1092-1103.	2.6	29
49	Spontaneous resolution amongst chiral ortho-cyanophenyl glycerol derivatives: an effective preferential crystallization approach to a single enantiomer of the β-adrenoblocker bunitrolol. Tetrahedron: Asymmetry, 2008, 19, 1430-1435.	1.8	13
50	Chiral drugs related to guaifenesin: synthesis and phase properties of methocarbamol and mephenoxalone. Tetrahedron: Asymmetry, 2007, 18, 1239-1244.	1.8	26
51	Spontaneous resolution among chiral glycerol derivatives: crystallization features of ortho-alkoxysubstituted phenyl glycerol ethers. Tetrahedron: Asymmetry, 2007, 18, 1964-1970.	1.8	16
52	Nonracemic menthyl phosphorylacetates. Russian Chemical Bulletin, 2007, 56, 290-297.	1.5	2
53	Crystallization of chiral compounds 4. Simple physical model for reconstruction of post-eutectic DSC traces for melting of binary enantiomeric mixtures. Russian Chemical Bulletin, 2007, 56, 1337-1342.	1.5	3
54	Solid state properties and effective resolution procedure for guaifenesin, 3-(2-methoxyphenoxy)-1,2-propanediol. Tetrahedron: Asymmetry, 2006, 17, 3015-3020.	1.8	24

#	Article	IF	CITATIONS
55	Oxidation of prochiral sulfides with chiral dioxirane. Russian Journal of Organic Chemistry, 2006, 42, 12-16.	0.8	14
56	Solid-state properties of 1,2-epoxy-3-(2-cyanophenoxy)propane, a conglomerate-forming chiral drug precursor. Mendeleev Communications, 2006, 16, 245-247.	1.6	6
57	Crystallization of chiral compounds 3. 3-phenoxypropane-1,2-diol and 3-(2-halophenoxy)propane-1,2-diols. Russian Chemical Bulletin, 2006, 55, 230-237.	1.5	5
58	Stereochemistry of 1,3-diheterocyclanes 4. Molecular and crystal structures of monosubstituted five-membered cyclic sulfites. Russian Chemical Bulletin, 2006, 55, 1137-1145.	1.5	3
59	Solid state properties of 1,2-epoxy-3-(2-methoxyphenyloxy)-propane—valuable intermediate in non-racemic drug synthesis. Tetrahedron: Asymmetry, 2005, 16, 3361-3366.	1.8	11
60	Jacobsen Enantioselective Hydrolysis of Glycidyl Diethyl Phosphate. Russian Journal of General Chemistry, 2005, 75, 1514-1516.	0.8	0
61	Rational approach to a conglomerate-forming propranolol derivative: pointed modifications of the crystal structure. Mendeleev Communications, 2004, 14, 268-270.	1.6	10
62	Jacobsen-type enantioselective hydrolysis of aryl glycidyl ethers.31P NMR analysis of the enantiomeric composition of oxiranes. Russian Chemical Bulletin, 2004, 53, 213-218.	1.5	12
63	Crystallization of chiral compounds. 2. Propranolol: free base and hydrochloride. Russian Chemical Bulletin, 2003, 52, 853-861.	1.5	14
64	Metal complex electrocatalytic reduction of 1,1-dihalocyclopropanes. Russian Chemical Bulletin, 2003, 52, 923-928.	1.5	3
65	Title is missing!. Russian Chemical Bulletin, 2003, 52, 846-852.	1.5	2
66	Electrochemical Reduction and Oxidation of 3,4-Disubstituted 1,2,5-Thiadiazoles. Russian Journal of General Chemistry, 2003, 73, 806-815.	0.8	3
67	Conversions of 2-Phenyl-1,3,2-dioxaphospholane Under the Action of Hydrogen Chloride. Russian Journal of General Chemistry, 2003, 73, 928-932.	0.8	1
68	Electroreduction of Phthalazines and 1,2,5-Thiadiazoles: Structural Factors Determining the Opening of Heterocycle. Russian Journal of Electrochemistry, 2003, 39, 1166-1180.	0.9	0
69	Stereochemistry of 1,3-Diheterocyclanes: III. Crystal and Molecular Structure and Conformations of cis- and trans-5-Phenoxy-1,3,2-dioxathiane 2-Oxides. Russian Journal of General Chemistry, 2003, 73, 1282-1287.	0.8	2
70	Systematic search for conglomerates among glycerol aromatic monoethers: guaifenesin and mephenesin are the cases. Mendeleev Communications, 2003, 13, 104-105.	1.6	20
71	Electrochemical reduction of 5-halo-5-nitro-1,3-dioxanes and 2-halo-2-nitro-1,3-propanediols. Russian Chemical Bulletin, 2002, 51, 78-84.	1.5	1
72	Cyclic Sulfites, Key Intermediates in Synthesis of 1-Alkylamino-3-aryloxy-2-propanols from Glycidol. Russian Journal of Organic Chemistry, 2002, 38, 213-219.	0.8	21

#	Article	IF	CITATIONS
73	Title is missing!. Russian Journal of General Chemistry, 2002, 72, 1207-1214.	0.8	1
74	Title is missing!. Russian Chemical Bulletin, 2001, 50, 436-439.	1.5	4
75	Synthesis of Aryloxy-Substituted 1,2,5-Thiadiazoles by the Ullmann Reaction. Russian Journal of Organic Chemistry, 2001, 37, 1330-1334.	0.8	7
76	Cyclic phosphorochloridites (chloridates) based on chiral butane-2,3-diol and dihydrobenzoin as reagents for the analysis of enantiomeric compositions of alcohols by31P NMR spectroscopy. Russian Chemical Bulletin, 2000, 49, 310-313.	1.5	6
77	New approach to cyclic sulfites and sulfates through reactions of sulfur oxychlorides with glycidols. Russian Chemical Bulletin, 2000, 49, 1575-1582.	1.5	5
78	Reactions of 4-chloromethyl-1,3,2-dioxathiolane 2-oxides with sodium phenoxide. A reinvestigation. Russian Chemical Bulletin, 2000, 49, 1753-1756.	1.5	4
79	New Type of Molecular Propellers with Acyclic Blades Stabilised by Phosphorus Atropoisomerism. Phosphorus, Sulfur and Silicon and the Related Elements, 1999, 144, 737-740.	1.6	0
80	New reaction of glycidols with oxalyl chloride and phosgene—an approach to cyclic esters. Russian Chemical Bulletin, 1999, 48, 2086-2090.	1.5	4
81	Cyclic (4S)-chloromethyl sulfite and sulfate derivatives of (S)-glycidol as valuable synthetic equivalents of scalemic epichlorohydrin. Mendeleev Communications, 1999, 9, 236-237.	1.6	8
82	Reaction of glycidol with dichloroethers: cyclic and acyclic ortho ester formation. Mendeleev Communications, 1998, 8, 81-82.	1.6	4
83	(4R,5R)-Bis(N,N-dimethylaminocarbonyl)-2-chloro-1,3,2-dioxaphospholane: A convenient reagent for control of enantiomeric composition of chiral alcohols by31P NMR spectroscopy. Russian Chemical Bulletin, 1998, 47, 174-176.	1.5	6
84	On the use of seven-membered phosphorous heterocycles based on 2,2′-dihydroxy-1,1′-binaphthalene and 1,4ⰶ3,6-dianhydro-d-mannitol in the31P NMR analysis of the enantiomeric composition of chiral alcohols. Russian Chemical Bulletin, 1998, 47, 411-416.	1.5	11
85	SOME NEW ASPECTS OF GLYCIDOL PHOSPHORYLATION BY PCI3. Phosphorus, Sulfur and Silicon and the Related Elements, 1997, 131, 173-182.	1.6	9
86	Comparative analysis of the applicability of AM1 and CNDO/2 methods for quantitative prediction of the35Cl NQR frequencies of RC-Cl compounds. Bulletin of the Russian Academy of Sciences Division of Chemical Science, 1992, 41, 846-849.	0.0	0
87	Photoelectron spectra of alkoxyacetylenes: n, ?-interactions with simultaneous participation of both oxygen unshared pairs. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1991, 40, 1583-1587.	0.0	1
88	Polarity, polarizability, and structure of esters. 8. Relationships in spatial structure and electrooptical characteristics of esters of benzoic acids. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1991, 40, 696-702.	0.0	0
89	Competition between n,?- and n,?-orbital interactions in chlorinated ethers R-O-chcir 1. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1991, 40, 2185-2189.	0.0	0
90	Polarity, polarizability, and structure of esters 7. Electronic and steric structure of clcoocclnh3-n chlorinated chloroformates. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1991, 40, 355-359.	0.0	0

#	Article	IF	CITATIONS
91	Polarity, polarizability, and structure of esters. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1989, 38, 58-63.	0.0	0
92	Polarity, polarizability, and structure of esters. 6. Conformations of para-substituted phenyl chloroformates in solutions. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1989, 38, 2476-2479.	0.0	1
93	Polarity, polarizability, and structure of esters. 4. Conformations of para-substituted phenyl acetates in solutions. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1989, 38, 1422-1426.	0.0	0
94	Polarity, polarizability, and structure of esters. 5. Phenyl formates. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1989, 38, 1426-1430.	0.0	0
95	Polarity, polarizability, and structure of esters. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1988, 37, 678-682.	0.0	0
96	Polarity, polarizability, and structure of esters. 2. Conformations of ethyl formate, ethyl acetate, isopropyl formate, and isopropyl acetate in solutions. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1988, 37, 931-934.	0.0	0
97	Conformations of 0,0-dimethyl-substituted diphenyl ethers in solutions based on data from electro-optical methods. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1988, 37, 274-278.	0.0	0
98	Parameters of the conformational equilibrium in phenyl formate. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1988, 37, 1371-1373.	0.0	0
99	Electronic structure of trichloromethyl ethers. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1987, 36, 958-962.	0.0	0
100	Steric structure and orbital interactions in ?-chlorovinyl ethers. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1987, 36, 90-93.	0.0	0
101	Electronic and spatial structure of dichloromethyl aryl ethers. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1987, 36, 955-958.	0.0	0
102	Ionization potentials and intramolecular charge transfer. Photoelectron spectra of chloromethyl and methyl alkyl ethers. Journal of Structural Chemistry, 1986, 27, 230-235.	1.0	0
103	Polarity, polarizability and steric structure of 2,2-dichlorovinyl alkyl ethers. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1986, 35, 506-508.	0.0	0
104	Intensity of IR spectral bands, intramolecular interactions, and conformations of aryl chloromethyl ethers. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1986, 35, 1828-1831.	0.0	0
105	Conformation of 1,1-dichloroethyl alkyl ethers. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1986, 35, 1934-1935.	0.0	0
106	Polarity and polarizability of alkoxyacetylenes. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1986, 35, 1089-1091.	0.0	0
107	Structure of dimethoxyamine in the crystalline and gaseous phases and in solution. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1986, 35, 2040-2046.	0.0	0
108	Polarity and polarizability of some 1,4-dioxenes. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1985, 34, 1604-1608.	0.0	0

#	Article	IF	CITATIONS
109	Anisotropy of the magnetic susceptibility of the C-O bond from cotton-mouton effect data for anisoles and 1,4-dioxane. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1985, 34, 308-311.	0.0	0
110	Steric structure of aryl chloromethyl ethers based on electrooptical data. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1985, 34, 2518-2522.	0.0	0
111	Effect of substituents on the35cl NQR frequencies of atoms in conditions of hyperconjugation. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1985, 34, 1203-1207.	0.0	3
112	Polarity, polarizability anisotropy, and conformations of 1,2,2,2-tetrachloroethyl alkyl ethers. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1985, 34, 1208-1211.	0.0	0
113	35Cl NQR of cyclic ?-chlorovinyl ethers and orbital interactions in O-C-Cl triad. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1985, 34, 2037-2040.	0.0	0
114	35Cl NQR spectra of several aryl chloromethyl ethers. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1985, 34, 1094-1096.	0.0	0
115	Vibration spectra and conformation of ?,?-dichloromethyl alkyl ethers. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1984, 33, 1794-1798.	0.0	0
116	Polarity and polarizability of some 4,6-dimethylpyrimidine derivatives. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1984, 33, 1408-1412.	0.0	0
117	Polarity, polarizability, and conformations of ?-chloroethers. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1983, 32, 2029-2032.	0.0	0
118	Investigation of several ?-chloro ethers by13C and17O NMR. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1983, 32, 2044-2047.	0.0	0
119	Asymmetry in the electronic and spatial structures of diphenyl ethers. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1982, 31, 2395-2398.	0.0	0
120	Polarizability anisotropy of several anisoles and 1,4-benzodioxanes. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1981, 30, 419-423.	0.0	0
121	Polarity and polarizability of sterically hindered phenols and anisoles. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1981, 30, 2255-2258.	0.0	Ο