
José Melo-Ferreira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9323167/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The evolutionary pathways for local adaptation in mountain hares. Molecular Ecology, 2022, 31, 1487-1503.	2.0	8
2	TLR7 and TLR8 evolution in lagomorphs: different patterns in the different lineages. Immunogenetics, 2022, 74, 475-485.	1.2	5
3	The Legacy of Recurrent Introgression during the Radiation of Hares. Systematic Biology, 2021, 70, 593-607.	2.7	47
4	Iberian hares with anciently introgressed mitochondrial DNA express a marginal environmental niche. Journal of Biogeography, 2021, 48, 2328-2336.	1.4	6
5	Museomics Dissects the Genetic Basis for Adaptive Seasonal Coloration in the Least Weasel. Molecular Biology and Evolution, 2021, 38, 4388-4402.	3.5	8
6	An Annotated Draft Genome of the Mountain Hare (Lepus timidus). Genome Biology and Evolution, 2020, 12, 3656-3662.	1.1	13
7	Nucleotide diversity of functionally different groups of immune response genes in Old World camels based on newly annotated and reference-guided assemblies. BMC Genomics, 2020, 21, 606.	1.2	15
8	Transcriptomic regulation of seasonal coat color change in hares. Ecology and Evolution, 2020, 10, 1180-1192.	0.8	16
9	Evolution of Fc Receptor-Like Scavenger in Mammals. Frontiers in Immunology, 2020, 11, 590280.	2.2	10
10	Introgression drives repeated evolution of winter coat color polymorphism in hares. Proceedings of the United States of America, 2019, 116, 24150-24156.	3.3	56
11	The evolutionary history of the Cape hare (Lepus capensis sensu lato): insights for systematics and biogeography. Heredity, 2019, 123, 634-646.	1.2	12
12	Analysis of substitution rates showed that TLR5 is evolving at different rates among mammalian groups. BMC Evolutionary Biology, 2019, 19, 221.	3.2	11
13	Insights into the evolution of the new variant rabbit haemorrhagic disease virus (GI.2) and the identification of novel recombinant strains. Transboundary and Emerging Diseases, 2018, 65, 983-992.	1.3	52
14	Winter color polymorphisms identify global hot spots for evolutionary rescue from climate change. Science, 2018, 359, 1033-1036.	6.0	91
15	Function and underlying mechanisms of seasonal colour moulting in mammals and birds: what keeps them changing in a warming world?. Biological Reviews, 2018, 93, 1478-1498.	4.7	109
16	Postâ€glacial range revolutions in South European hares (<i>Lepus</i> Âspp.): Insights from ancient <scp>DNA</scp> and ecological niche modelling. Journal of Biogeography, 2018, 45, 2609-2618.	1.4	10
17	The genomic impact of historical hybridization with massive mitochondrial DNA introgression. Genome Biology, 2018, 19, 91.	3.8	71
18	Adaptive introgression underlies polymorphic seasonal camouflage in snowshoe hares. Science, 2018, 360, 1355-1358.	6.0	234

José Melo-Ferreira

#	Article	IF	CITATIONS
19	Range expansion underlies historical introgressive hybridization in the Iberian hare. Scientific Reports, 2017, 7, 40788.	1.6	35
20	The transcriptional landscape of seasonal coat colour moult in the snowshoe hare. Molecular Ecology, 2017, 26, 4173-4185.	2.0	27
21	Mountain hare transcriptome and diagnostic markers as resources to monitor hybridization with European hares. Scientific Data, 2017, 4, 170178.	2.4	11
22	Genetic Basis for Red Coloration in Birds. Current Biology, 2016, 26, 1427-1434.	1.8	192
23	A new and highly divergent mitochondrial lineage in the Small Five-toed Jerboa, Allactaga elater, from Iran (Mammalia: Rodentia). Zoology in the Middle East, 2016, 62, 206-211.	0.2	4
24	LaGomiCs—Lagomorph Genomics Consortium: An International Collaborative Effort for Sequencing the Genomes of an Entire Mammalian Order. Journal of Heredity, 2016, 107, 295-308.	1.0	19
25	Range dynamics driven by Quaternary climate oscillations explain the distribution of introgressed mt <scp>DNA</scp> ofÂ <i>Lepus timidus</i> origin in hares from the Iberian Peninsula. Journal of Biogeography, 2015, 42, 1727-1735.	1.4	21
26	The phylogeny of pikas (Ochotona) inferred from a multilocus coalescent approach. Molecular Phylogenetics and Evolution, 2015, 84, 240-244.	1.2	28
27	Endogenization of mouse mammary tumor virus (MMTV)-like elements in genomes of pikas (Ochotona) Tj ETQq	1 1.0.7843 1.1	31 4 rgBT /O∨
28	The Genomic Architecture of Population Divergence between Subspecies of the European Rabbit. PLoS Genetics, 2014, 10, e1003519.	1.5	82
29	The Elusive Nature of Adaptive Mitochondrial DNA Evolution of an Arctic Lineage Prone to Frequent Introgression. Genome Biology and Evolution, 2014, 6, 886-896.	1.1	78
30	Evidence for niche similarities in the allopatric sister species <i><scp>L</scp>epus castroviejoi</i> and <i><scp>L</scp>epus corsicanus</i> . Journal of Biogeography, 2014, 41, 977-986.	1.4	17
31	Advances in <scp>E</scp> cological <scp>S</scp> peciation: an integrative approach. Molecular Ecology, 2014, 23, 513-521.	2.0	63
32	Conservation implications of the evolutionary history and genetic diversity hotspots of the snowshoe hare. Molecular Ecology, 2014, 23, 2929-2942.	2.0	32
33	Home-loving boreal hare mitochondria survived several invasions in Iberia: the relative roles of recurrent hybridisation and allele surfing. Heredity, 2014, 112, 265-273.	1.2	30
34	The hidden history of the snowshoe hare, <i><scp>L</scp>epus americanus</i> : extensive mitochondrial <scp>DNA</scp> introgression inferred from multilocus genetic variation. Molecular Ecology, 2014, 23, 4617-4630.	2.0	40
35	Sequencing of Sylvilagus VDJ genes reveals a new VHa allelic lineage and shows that ancient VH lineages were retained differently in leporids. Immunogenetics, 2014, 66, 719-726.	1.2	6
36	Molecular and ecological signs of mitochondrial adaptation: consequences for introgression?. Heredity, 2014, 113, 277-286.	1.2	37

#	Article	IF	Citations
37	Colonization history of Mallorca Island by the European rabbit, <i>Oryctolagus cuniculus </i> , and the Iberian hare, <i>Lepus granatensis </i> (Lagomorpha: Leporidae). Biological Journal of the Linnean Society, 2014, 111, 748-760.	0.7	7
38	Reference-Free Population Genomics from Next-Generation Transcriptome Data and the Vertebrate–Invertebrate Gap. PLoS Genetics, 2013, 9, e1003457.	1.5	157
39	Not so pseudo: the evolutionary history of protein phosphatase 1 regulatory subunit 2 and related pseudogenes. BMC Evolutionary Biology, 2013, 13, 242.	3.2	14
40	Evidence for Widespread Positive and Purifying Selection Across the European Rabbit (Oryctolagus) Tj ETQq0 0 0	rgBT /Ove	rlock 10 Tf 5 71
41	Cryptic speciation in the field vole: a multilocus approach confirms three highly divergent lineages in <scp>E</scp> urasia. Molecular Ecology, 2012, 21, 6015-6032.	2.0	59
42	Recurrent Introgression of Mitochondrial DNA Among Hares (Lepus spp.) Revealed by Species-Tree Inference and Coalescent Simulations. Systematic Biology, 2012, 61, 367.	2.7	111
43	Past, Present and Future Distributions of an Iberian Endemic, Lepus granatensis: Ecological and Evolutionary Clues from Species Distribution Models. PLoS ONE, 2012, 7, e51529.	1.1	31
44	Parapatric species and the implications for climate change studies: a case study on hares in <scp>E</scp> urope. Global Change Biology, 2012, 18, 1509-1519.	4.2	49
45	Referenceâ€free transcriptome assembly in nonâ€model animals from nextâ€generation sequencing data. Molecular Ecology Resources, 2012, 12, 834-845.	2.2	142
46	INTERSPECIFIC X-CHROMOSOME AND MITOCHONDRIAL DNA INTROGRESSION IN THE IBERIAN HARE: SELECTION OR ALLELE SURFING?. Evolution; International Journal of Organic Evolution, 2011, 65, 1956-1968.	1.1	29
47	Hares in Corsica: high prevalence of Lepus corsicanus and hybridization with introduced L. europaeus and L. granatensis. European Journal of Wildlife Research, 2011, 57, 313-321.	0.7	19
48	Introgression of mitochondrial DNA among Myodes voles: consequences for energetics?. BMC Evolutionary Biology, 2011, 11, 355.	3.2	50
49	The genomic legacy from the extinct <i>Lepus timidus</i> to the three hare species of Iberia: contrast between mtDNA, sex chromosomes and autosomes. Molecular Ecology, 2009, 18, 2643-2658.	2.0	69
50	Evidence for genetic similarity of two allopatric European hares (Lepus corsicanus and L.) Tj ETQq0 0 0 rgBT /Over 1191-1197.	lock 10 Tf 1.2	50 227 Td (39
51	The ubiquitous mountain hare mitochondria: multiple introgressive hybridization in hares, genus <i>Lepus</i> . Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 2831-2839.	1.8	111
52	The rise and fall of the mountain hare (Lepus timidus) during Pleistocene glaciations: expansion and retreat with hybridization in the Iberian Peninsula. Molecular Ecology, 2006, 16, 605-618.	2.0	95

53	Hares on thin ice: Introgression of mitochondrial DNA in hares and its implications for recent phylogenetic analyses. Molecular Phylogenetics and Evolution, 2006, 40, 640-641.	1.2	40	
	Invasion from the cold past: extensive introgression of mountain hare (Lepus timidus) mitochondrial			

⁵⁴ Invasion from the cold past: extensive introgression of mountain hare (Lepus timidus) mitochondrial 2.0 183