Hugo Massé-Alarie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9323065/publications.pdf

Version: 2024-02-01

48 1,021 18 29
papers citations h-index g-index

52 52 52 1102 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	UTAUT2-based questionnaire: cross-cultural adaptation to Canadian French. Disability and Rehabilitation, 2022, , $1\text{-}8$.	0.9	О
2	Low back pain definitions: effect on patient inclusion and clinical profiles. Pain Reports, 2022, 7, e997.	1.4	5
3	Effects of different modalities of afferent stimuli of the lumboâ€sacral area on control of lumbar paravertebral muscles. European Journal of Neuroscience, 2022, 56, 3687-3704.	1.2	1
4	Can training of a skilled pelvic movement change corticomotor control of back muscles? Comparison of single and pairedâ€pulse transcranial magnetic stimulation. European Journal of Neuroscience, 2022, 56, 3705-3719.	1.2	4
5	The influence of experimental low back pain on neural networks involved in the control of lumbar erector spinae muscles. Journal of Neurophysiology, 2022, 127, 1593-1605.	0.9	4
6	Motor control of the spine in pregnancy-related lumbopelvic pain: A systematic review. Clinical Biomechanics, 2022, 98, 105716.	0.5	2
7	Is adding pelvic floor muscle training to an exercise intervention more effective at improving pain in patients with non-specific low back pain? A systematic review of randomized controlled trials. Physiotherapy, 2021, 110, 15-25.	0.2	4
8	Within-session test-retest reliability of pressure pain threshold and mechanical temporal summation in healthy subjects. PLoS ONE, 2021, 16, e0245278.	1.1	17
9	The effect of experimental pain on the excitability of the corticospinal tract in humans: A systematic review and metaâ€analysis. European Journal of Pain, 2021, 25, 1209-1226.	1.4	34
10	Repetitive transcranial magnetic stimulation alone and in combination with motor control exercise for the treatment of individuals with chronic non-specific low back pain (ExTraStim trial): study protocol for a randomised controlled trial. BMJ Open, 2021, 11, e045504.	0.8	3
11	The Effect of Noninvasive Brain Stimulation to Reduce Nonspecific Low Back Pain. Clinical Journal of Pain, 2021, 37, 475-485.	0.8	10
12	Motor Responses of Lumbar Erector Spinae Induced by Electrical Vestibular Stimulation in Seated Participants. Frontiers in Human Neuroscience, 2021, 15, 690433.	1.0	4
13	Wrist, but Not Back, Isometric Contraction Induced Widespread Hypoalgesia in Healthy Participants. Frontiers in Pain Research, 2021, 2, 701830.	0.9	2
14	Influence of different transcranial magnetic stimulation current directions on the corticomotor control of lumbar erector spinae muscles during a static task. Journal of Neurophysiology, 2021, 126, 1276-1288.	0.9	8
15	Methods to discriminate between mechanism-based categories of pain experienced in the musculoskeletal system: a systematic review. Pain, 2021, 162, 1007-1037.	2.0	57
16	Influence of different transcranial magnetic stimulation current directions on the corticomotor control of lumbar erector spinae muscles during a static task. Brain Stimulation, 2021, 14, 1594.	0.7	0
17	Domains of Chronic Low Back Pain and Assessing Treatment Effectiveness: A Clinical Perspective. Pain Practice, 2020, 20, 211-225.	0.9	108
18	Effect of thermal therapy and exercises on acute low back pain: a protocol for a randomized controlled trial. BMC Musculoskeletal Disorders, 2020, 21, 814.	0.8	2

#	Article	IF	CITATIONS
19	Effect of exercise on pain processing and motor output in people with knee osteoarthritis: a systematic review and meta-analysis. Osteoarthritis and Cartilage, 2020, 28, 1501-1513.	0.6	19
20	Systematic Review and Synthesis of Mechanism-based Classification Systems for Pain Experienced in the Musculoskeletal System. Clinical Journal of Pain, 2020, 36, 793-812.	0.8	42
21	Corticomotor reorganization during shortâ€term visuomotor training in the lower back: A randomized controlled study. Brain and Behavior, 2020, 10, e01702.	1.0	11
22	A new method to elicit and measure movement illusions in stroke by means of muscle tendon vibration: the Standardized Kinesthetic Illusion Procedure (SKIP). Somatosensory & Motor Research, 2020, 37, 28-36.	0.4	8
23	Stretch-induced hypoalgesia: a pilot study. Scandinavian Journal of Pain, 2020, 20, 837-845.	0.5	2
24	Electrical Stimulation of Back Muscles Does Not Prime the Corticospinal Pathway. Neuromodulation, 2019, 22, 555-563.	0.4	7
25	The nociceptive withdrawal reflex of the trunk is organized with unique muscle receptive fields and motor strategies. European Journal of Neuroscience, 2019, 50, 1932-1947.	1.2	10
26	Reply to the comment on: "Reporting matters: Brain mapping with transcranial magnetic stimulation― Human Brain Mapping, 2019, 40, 354-355.	1.9	2
27	Modulation of Corticospinal Excitability of Trunk Muscles in Preparation of Rapid Arm Movement. Neuroscience, 2018, 369, 231-241.	1.1	13
28	The activation of transversus abdominis muscle during rapid limb movements depends on the anticipation of postural demand rather than on respiratory reflexes. Gait and Posture, 2018, 60, 13-14.	0.6	0
29	Stimulating the Healthy Brain to Investigate Neural Correlates of Motor Preparation: A Systematic Review. Neural Plasticity, 2018, 2018, 1-14.	1.0	9
30	Repetitive peripheral magnetic neurostimulation of multifidus muscles combined with motor training influences spine motor control and chronic low back pain. Clinical Neurophysiology, 2017, 128, 442-453.	0.7	37
31	Reliability of lower limb transcranial magnetic stimulation outcomes in the ipsi- and contralesional hemispheres of adults with chronic stroke. Clinical Neurophysiology, 2017, 128, 1290-1298.	0.7	18
32	After-effects of peripheral neurostimulation on brain plasticity and ankle function in chronic stroke: The role of afferents recruited. Neurophysiologie Clinique, 2017, 47, 275-291.	1.0	27
33	Reliability and minimal detectable change of transcranial magnetic stimulation outcomes in healthy adults: A systematic review. Brain Stimulation, 2017, 10, 196-213.	0.7	67
34	"Discrete peaks―of excitability and map overlap reveal taskâ€specific organization of primary motor cortex for control of human forearm muscles. Human Brain Mapping, 2017, 38, 6118-6132.	1.9	36
35	The side of chronic low back pain matters: evidence from the primary motor cortex excitability and the postural adjustments of multifidi muscles. Experimental Brain Research, 2017, 235, 647-659.	0.7	20
36	Modulation of corticospinal output in agonist and antagonist proximal arm muscles during motor preparation. PLoS ONE, 2017, 12, e0188801.	1.1	13

#	Article	IF	CITATIONS
37	Revisiting the Corticomotor Plasticity in Low Back Pain: Challenges and Perspectives. Healthcare (Switzerland), 2016, 4, 67.	1.0	20
38	Influence of paravertebral muscles training on brain plasticity and postural control in chronic low back pain. Scandinavian Journal of Pain, 2016, 12, 74-83.	0.5	25
39	Influence of chronic low back pain and fear of movement on the activation of the transversely oriented abdominal muscles during forward bending. Journal of Electromyography and Kinesiology, 2016, 27, 87-94.	0.7	34
40	Corticomotor control of lumbar multifidus muscles is impaired in chronic low back pain: concurrent evidence from ultrasound imaging and double-pulse transcranial magnetic stimulation. Experimental Brain Research, 2016, 234, 1033-1045.	0.7	58
41	Paired-Pulse TMS and Fine-Wire Recordings Reveal Short-Interval Intracortical Inhibition and Facilitation of Deep Multifidus Muscle Fascicles. PLoS ONE, 2016, 11, e0159391.	1.1	14
42	Noninvasive neurostimulation in chronic stroke: a double-blind randomized sham-controlled testing of clinical and corticomotor effects. Topics in Stroke Rehabilitation, 2015, 22, 8-17.	1.0	34
43	Task-specificity of bilateral anticipatory activation of the deep abdominal muscles in healthy and chronic low back pain populations. Gait and Posture, 2015, 41, 440-447.	0.6	39
44	Multifidus voluntary training versus hip extension exercises in chronic low back pain: effects on clinical outcomes and underlying corticomotor function. Physiotherapy, 2015, 101, e960-e961.	0.2	1
45	Brain control of volitional ankle tasks in people with chronic stroke and in healthy individuals. Journal of the Neurological Sciences, 2014, 338, 148-155.	0.3	16
46	Psychometric evidence of spasticity measurement tools in cerebral palsy children and adolescents: A systematic review. Journal of Rehabilitation Medicine, 2013, 45, 14-23.	0.8	35
47	Peripheral Neurostimulation and Specific Motor Training of Deep Abdominal Muscles Improve Posturomotor Control in Chronic Low Back Pain. Clinical Journal of Pain, 2013, 29, 814-823.	0.8	41
48	Corticomotor control of deep abdominal muscles in chronic low back pain and anticipatory postural adjustments. Experimental Brain Research, 2012, 218, 99-109.	0.7	90