Linda S Lee

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/9322448/linda-s-lee-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

125
papers5,161
citations38
h-index67
g-index131
ext. papers5,813
ext. citations7.5
avg, IF5.8
L-index

#	Paper	IF	Citations
125	Adaptation to Social-Ecological Change in Northwestern Pakistan: Household Strategies and Decision-making Processes <i>Environmental Management</i> , 2022 , 1	3.1	
124	Leveraging high-throughput hyperspectral imaging technology to detect cadmium stress in two leafy green crops and accelerate soil remediation efforts. <i>Environmental Pollution</i> , 2022 , 292, 118405	9.3	2
123	Release of poly- and perfluoroalkyl substances from finished biosolids in soil mesocosms <i>Water Research</i> , 2022 , 217, 118405	12.5	2
122	Transformation and defluorination by nNiFe-activated carbon nanocomposites: PFAS structure and matrix effects. <i>Journal of Environmental Chemical Engineering</i> , 2021 , 9, 106901	6.8	0
121	Nevertheless, They Persisted: Can Hyporheic Zones Increase the Persistence of Estrogens in Streams?. <i>Water Resources Research</i> , 2021 , 57, e2020WR028518	5.4	O
120	Sublethal Effects of Dermal Exposure to Poly- and Perfluoroalkyl Substances on Postmetamorphic Amphibians. <i>Environmental Toxicology and Chemistry</i> , 2021 , 40, 717-726	3.8	6
119	Chronic Per-/Polyfluoroalkyl Substance Exposure Under Environmentally Relevant Conditions Delays Development in Northern Leopard Frog (Rana pipiens) Larvae. <i>Environmental Toxicology and Chemistry</i> , 2021 , 40, 711-716	3.8	9
118	Comparison of zebrafish in vitro and in vivo developmental toxicity assessments of perfluoroalkyl acids (PFAAs). <i>Journal of Toxicology and Environmental Health - Part A: Current Issues</i> , 2021 , 84, 125-136	3.2	8
117	Dietary exposure and accumulation of per- and polyfluoroalkyl substances alters growth and reduces body condition of post-metamorphic salamanders. <i>Science of the Total Environment</i> , 2021 , 765, 142730	10.2	4
116	Persistence of three bisphenols and other trace organics of concern in anaerobic sludge under methanogenic conditions. <i>Environmental Technology (United Kingdom)</i> , 2021 , 42, 1373-1382	2.6	1
115	Efficient Heated Ultrasound Assisted Extraction and Clean-Up Method for Quantifying Paclitaxel Concentrations in Taxus Wallichiana. <i>International Journal of Environmental Analytical Chemistry</i> , 2021 , 101, 549-560	1.8	1
114	Environmental Sources, Chemistry, Fate, and Transport of Per- and Polyfluoroalkyl Substances: State of the Science, Key Knowledge Gaps, and Recommendations Presented at the August 2019 SETAC Focus Topic Meeting. <i>Environmental Toxicology and Chemistry</i> , 2021 , 40, 3234-3260	3.8	10
113	Characterizing and Comparing Per- and Polyfluoroalkyl Substances in Commercially Available Biosolid and Organic Non-Biosolid-Based Products. <i>Environmental Science & Environmental Science & Environm</i>	10.3	16
112	Single and mixture per- and polyfluoroalkyl substances accumulate in developing Northern leopard frog brains and produce complex neurotransmission alterations. <i>Neurotoxicology and Teratology</i> , 2020 , 81, 106907	3.9	7
111	Evaluating perfluorooctanesulfonate oxidation in permanganate systems. <i>Environmental Science and Pollution Research</i> , 2020 , 27, 13976-13984	5.1	1
110	Reductive transformation of perfluorooctanesulfonate by nNiFe-Activated carbon. <i>Journal of Hazardous Materials</i> , 2020 , 397, 122782	12.8	11
109	Developmental exposure to perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) selectively decreases brain dopamine levels in Northern leopard frogs. <i>Toxicology and Applied Pharmacology</i> , 2019 , 377, 114623	4.6	26

(2016-2019)

108	Perfluoroalkyl Acid Characterization in U.S. Municipal Organic Solid Waste Composts. <i>Environmental Science and Technology Letters</i> , 2019 , 6, 372-377	11	31	
107	Larval amphibians rapidly bioaccumulate poly- and perfluoroalkyl substances. <i>Ecotoxicology and Environmental Safety</i> , 2019 , 178, 137-145	7	20	
106	Perfluorooctane Sulfonate (PFOS) Produces Dopaminergic Neuropathology in Caenorhabditis elegans. <i>Toxicological Sciences</i> , 2019 , 172, 417-434	4.4	19	
105	Per- and polyfluoroalkyl substances in commercially available biosolid-based products: The effect of treatment processes. <i>Water Environment Research</i> , 2019 , 91, 1669-1677	2.8	18	
104	Building Social Capital to Foster Interprofessional Education: The Interprofessional Educator Academy. <i>Academic Medicine</i> , 2019 , 94, 1685-1690	3.9	8	
103	Sorption, Aerobic Biodegradation, and Oxidation Potential of PFOS Alternatives Chlorinated Polyfluoroalkyl Ether Sulfonic Acids. <i>Environmental Science & Environmental Scienc</i>	10.3	30	
102	Perfluorooctane sulfonate (PFOS) removal with Pd/nFe nanoparticles: Adsorption or aqueous Fe-complexation, not transformation?. <i>Journal of Hazardous Materials</i> , 2018 , 342, 20-28	12.8	26	
101	Partitioning Behavior of Bisphenol Alternatives BPS and BPAF Compared to BPA. <i>Environmental Science & Environmental &</i>	10.3	43	
100	Kinetic analysis of aerobic biotransformation pathways of a perfluorooctane sulfonate (PFOS) precursor in distinctly different soils. <i>Environmental Pollution</i> , 2017 , 229, 159-167	9.3	19	
99	Comparative analytical and toxicological assessment of methylcyclohexanemethanol (MCHM) mixtures associated with the Elk River chemical spill. <i>Chemosphere</i> , 2017 , 188, 599-607	8.4	9	
98	Range Design Considerations Based on Behavior of Antimony and Lead under Dynamic Loading Conditions. <i>Journal of Environmental Engineering, ASCE</i> , 2017 , 143, 04017024	2	2	
97	Uptake and Depuration of Four Per/Polyfluoroalkyl Substances (PFASS) in Northern Leopard Frog Rana pipiens Tadpoles. <i>Environmental Science and Technology Letters</i> , 2017 , 4, 399-403	11	21	
96	Gonadal intersex in smallmouth bass Micropterus dolomieu from northern Indiana with correlations to molecular biomarkers and anthropogenic chemicals. <i>Environmental Pollution</i> , 2017 , 230, 1099-1107	9.3	14	
95	Alternate Reductants with VB12 to Transform C8 and C6 Perfluoroalkyl Sulfonates: Limitations and Insights into Isomer-Specific Transformation Rates, Products and Pathways. <i>Environmental Science & Environmental Science</i>	10.3	14	
94	Aerobic Soil Biodegradation of Bisphenol (BPA) Alternatives Bisphenol S and Bisphenol AF Compared to BPA. <i>Environmental Science & Environmental Scien</i>	10.3	52	
93	Nitrate radical oxidation of <i></i>-terpinene: hydroxy nitrate, total organic nitrate, and secondary organic aerosol yields. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 8635-8650	6.8	14	
92	Covalent triazine-based framework: A promising adsorbent for removal of perfluoroalkyl acids from aqueous solution. <i>Environmental Pollution</i> , 2016 , 216, 884-892	9.3	42	
91	Assessing the impacts of anthropogenic and hydro-climatic drivers on estrogen legacies and trajectories. <i>Advances in Water Resources</i> , 2016 , 87, 19-28	4.7	8	

90	Heat-activated persulfate oxidation of PFOA, 6:2 fluorotelomer sulfonate, and PFOS under conditions suitable for in-situ groundwater remediation. <i>Chemosphere</i> , 2016 , 145, 376-83	8.4	120
89	Aerobic biodegradation of toluene-2,4-di(8:2 fluorotelomer urethane) and hexamethylene-1,6-di(8:2 fluorotelomer urethane) monomers in soils. <i>Chemosphere</i> , 2016 , 144, 2482-8	8.4	7
88	Comparison of export dynamics of nutrients and animal-borne estrogens from a tile-drained Midwestern agroecosystem. <i>Water Research</i> , 2015 , 72, 162-73	12.5	22
87	Environmental hormones and their impacts on sex differentiation in fathead minnows. <i>Aquatic Toxicology</i> , 2015 , 158, 98-107	5.1	30
86	Mentoring in Clinical-Translational Research: A Study of Participants in Master B Degree Programs. <i>Clinical and Translational Science</i> , 2015 , 8, 746-53	4.9	2
85	Microbial transformation of 8:2 fluorotelomer acrylate and methacrylate in aerobic soils. <i>Chemosphere</i> , 2015 , 129, 54-61	8.4	21
84	Hormone loads exported by a tile-drained agroecosystem receiving animal wastes. <i>Hydrological Processes</i> , 2014 , 28, 1318-1328	3.3	26
83	Biotransformation of 17Eand 17Eestradiol in aerobic soils. <i>Chemosphere</i> , 2013 , 90, 647-52	8.4	34
82	Aerobic biodegradation of 8:2 fluorotelomer stearate monoester and 8:2 fluorotelomer citrate triester in forest soil. <i>Chemosphere</i> , 2013 , 91, 399-405	8.4	26
81	Soil attenuation of As(III, V) and Se(IV, VI) seepage potential at ash disposal facilities. <i>Chemosphere</i> , 2013 , 93, 2132-9	8.4	7
80	Antimony migration trends from a small arms firing range compared to lead, copper, and zinc. <i>Science of the Total Environment</i> , 2013 , 463-464, 222-8	10.2	25
79	Transformation of 17Eestradiol, 17Eestradiol, and estrone in sediments under nitrate- and sulfate-reducing conditions. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	36
78	Estrogens and synthetic androgens in manure slurry from trenbolone acetate/estradiol implanted cattle and in waste-receiving lagoons used for irrigation. <i>Chemosphere</i> , 2012 , 89, 1443-9	8.4	32
77	Aerobic soil biodegradation of 8:2 fluorotelomer stearate monoester. <i>Environmental Science & Technology</i> , 2012 , 46, 3831-6	10.3	45
76	Assessing impacts of land-applied manure from concentrated animal feeding operations on fish populations and communities. <i>Environmental Science & Environmental Science & Env</i>	10.3	42
75	Prediction and experimental evaluation of soil sorption by natural hormones and hormone mimics. <i>Journal of Agricultural and Food Chemistry</i> , 2012 , 60, 1480-7	5.7	23
74	Clinical and translational scientist career success: metrics for evaluation. <i>Clinical and Translational Science</i> , 2012 , 5, 400-7	4.9	31
73	Probing the primary mechanisms affecting the environmental distribution of estrogen and androgen isomers. <i>Environmental Science & Environmental & Environment</i>	10.3	22

(2007-2011)

72	Evaluating stereoselective sorption by soils of 17 lestradiol and 17 lestradiol. <i>Chemosphere</i> , 2011 , 82, 847-52	8.4	39
71	Hormone discharges from a midwest tile-drained agroecosystem receiving animal wastes. <i>Environmental Science & Environmental S</i>	10.3	104
70	Phenanthrene and 2,2R5,5RPCB sorption by several soils from methanol-water solutions: the effect of weathering and solute structure. <i>Chemosphere</i> , 2010 , 78, 423-9	8.4	7
69	Soil temperature and moisture effects on the persistence of synthetic androgen 17alpha-trenbolone, 17beta-trenbolone and trendione. <i>Chemosphere</i> , 2010 , 79, 873-9	8.4	33
68	Defining translational research: implications for training. <i>Academic Medicine</i> , 2010 , 85, 470-5	3.9	398
67	Hydrolysis of fluorotelomer compounds leading to fluorotelomer alcohol production during solvent extractions of soils. <i>Chemosphere</i> , 2010 , 81, 911-7	8.4	17
66	Acute and chronic toxicity of atrazine and its metabolites deethylatrazine and deisopropylatrazine on aquatic organisms. <i>Ecotoxicology</i> , 2009 , 18, 899-905	2.9	74
65	Stereoselective sorption by agricultural soils and liquid-liquid partitioning of trenbolone (17alpha and 17beta) and trendione. <i>Environmental Science & Environmental Science</i>	10.3	44
64	Ciprofloxacin sorption by dissolved organic carbon from reference and bio-waste materials. <i>Chemosphere</i> , 2009 , 77, 813-20	8.4	104
63	Degradation of synthetic androgens 17alpha- and 17beta-trenbolone and trendione in agricultural soils. <i>Environmental Science & Environmental Science </i>	10.3	56
62	Pentachlorophenol sorption by variable-charge soils in methanol-water mixture: pH effect at the low solvent volume fraction. <i>Chemosphere</i> , 2008 , 70, 503-10	8.4	11
61	Partitioning of fluorotelomer alcohols to octanol and different sources of dissolved organic carbon. <i>Environmental Science & Technology</i> , 2008 , 42, 6559-65	10.3	28
60	Chemical Modeling of Arsenic(III, V) and Selenium(IV, VI) Adsorption by Soils Surrounding Ash Disposal Facilities. <i>Vadose Zone Journal</i> , 2008 , 7, 1231-1238	2.7	27
59	Effect of fluorotelomer alcohol chain length on aqueous solubility and sorption by soils. <i>Environmental Science & Environmental Science & Environment</i>	10.3	53
58	Biotransformation of 8:2 fluorotelomer alcohol in soil and by soil bacteria isolates. <i>Environmental Science & Environmental &</i>	10.3	100
57	Agricultural Contributions of Antimicrobials and Hormones on Soil and Water Quality. <i>Advances in Agronomy</i> , 2007 , 1-68	7.7	82
56	Sorption of tylosin A, D, and A-aldol and degradation of tylosin A in soils. <i>Environmental Toxicology and Chemistry</i> , 2007 , 26, 1629-35	3.8	47
55	Sorption and degradation in soils of veterinary ionophore antibiotics: monensin and lasalocid. <i>Environmental Toxicology and Chemistry</i> , 2007 , 26, 1614-21	3.8	79

54	Occurrence and fate of the phytotoxin juglone in alley soils under black walnut trees. <i>Journal of Environmental Quality</i> , 2007 , 36, 709-17	3.4	40
53	Sorption and Degradation of Selected Pharmaceuticals in Soil and Manure 2007 , 139-165		
52	Cosolvent-enhanced chemical oxidation of perchloroethylene by potassium permanganate. <i>Journal of Contaminant Hydrology</i> , 2006 , 82, 61-74	3.9	32
51	Partitioning of mono- and polycyclic aromatic hydrocarbons in a river sediment adjacent to a former manufactured gas plant site. <i>Chemosphere</i> , 2006 , 62, 315-21	8.4	12
50	Laboratory studies to characterize the efficacy of sand capping a coal tar-contaminated sediment. <i>Chemosphere</i> , 2006 , 63, 1621-31	8.4	20
49	Characterizing As(III,V) adsorption by soils surrounding ash disposal facilities. <i>Chemosphere</i> , 2006 , 63, 1879-91	8.4	26
48	Selenium(IV) and (VI) Sorption by Soils Surrounding Fly Ash Management Facilities. <i>Vadose Zone Journal</i> , 2006 , 5, 1110-1118	2.7	29
47	Bioavailability of 2,3R4,4R5-pentachlorobiphenyl (PCB118) and 2,2R5,5Rtetrachlorobiphenyl (PCB52) from soils using a rat model and a physiologically based extraction test. <i>Toxicology</i> , 2006 , 217, 14-21	4.4	31
46	Sorption and related properties of the swine antibiotic carbadox and associated N-oxide reduced metabolites. <i>Environmental Science & Environmental Sc</i>	10.3	26
45	Quantifying the contribution of different sorption mechanisms for 2,4-dichlorophenoxyacetic acid sorption by several variable-charge soils. <i>Environmental Science & Environmental & Environme</i>	10.3	68
44	Solubility and sorption by soils of 8:2 fluorotelomer alcohol in water and cosolvent systems. <i>Environmental Science & Environmental &</i>	10.3	68
43	Sorption of three tetracyclines by several soils: assessing the role of pH and cation exchange. <i>Environmental Science & Environmental Science & Envir</i>	10.3	387
42	Accelerated degradation of N, NRdibutylurea (DBU) upon repeated application. <i>Biodegradation</i> , 2005 , 16, 265-73	4.1	8
41	Factors controlling sorption of prosulfuron by variable-charge soils and model sorbents. <i>Journal of Environmental Quality</i> , 2004 , 33, 1354-61	3.4	22
40	Evaluation of a rat model versus a physiologically based extraction test for assessing phenanthrene bioavailability from soils. <i>Toxicological Sciences</i> , 2004 , 79, 10-7	4.4	33
39	Assessing N,NRDibutylurea (DBU) formation in soils after application of n-butylisocyanate and benlate fungicides. <i>Journal of Agricultural and Food Chemistry</i> , 2004 , 52, 747-54	5.7	19
38	Sorption and degradation of steroid hormones in soils during transport: column studies and model evaluation. <i>Environmental Science & Environmental Sc</i>	10.3	138
37	Hydrophilic and hydrophobic sorption of organic acids by variable charge soils: effect of chemical acidity and acidic functional group. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	46

(1998-2004)

36	Evidence for pi-pi electron donor-acceptor interactions between pi-donor aromatic compounds and pi-acceptor sites in soil organic matter through pH effects on sorption. <i>Environmental Science & Environmental Science</i>	10.3	214
35	Degradation of N,NRdibutylurea (DBU) in soils treated with only DBU and DBU-fortified benlate fungicides. <i>Journal of Environmental Quality</i> , 2004 , 33, 1771-8	3.4	13
34	Oral bioavailability of pentachlorophenol from soils of varying characteristics using a rat model. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2003, 66, 2001-13	3.2	4
33	Significance of anion exchange in pentachlorophenol sorption by variable-charge soils. <i>Journal of Environmental Quality</i> , 2003 , 32, 966-76	3.4	32
32	Sorption and dissipation of testosterone, estrogens, and their primary transformation products in soils and sediment. <i>Environmental Science & Environmental &</i>	10.3	215
31	Role of soil manganese in the oxidation of aromatic amines. <i>Environmental Science & Environmental Sci</i>	10.3	80
30	Significance of Anion Exchange in Pentachlorophenol Sorption by Variable-Charge Soils 2003 , 32, 966		11
29	Factors affecting air sparging remediation systems using field data and numerical simulations. Journal of Hazardous Materials, 2002 , 95, 305-29	12.8	33
28	Role of pH in partitioning and cation exchange of aromatic amines on water-saturated soils. <i>Chemosphere</i> , 2001 , 44, 627-35	8.4	27
27	Modeling competitive cation exchange of aromatic amines in water-saturated soils. <i>Environmental Science & Environmental Scien</i>	10.3	13
26	Effects of dissolved organic matter from animal waste effluent on chlorpyrifos sorption by soils. Journal of Environmental Quality, 2001 , 30, 1258-65	3.4	62
25	Coupled effects of treated effluent irrigation and wetting-drying cycles on transport of triazines through unsaturated soil columns. <i>Journal of Environmental Quality</i> , 2001 , 30, 1644-52	3.4	12
24	Impact of animal waste lagoon effluents on chlorpyrifos degradation in soils. <i>Environmental Toxicology and Chemistry</i> , 2000 , 19, 2864-2870	3.8	14
23	Effect of Dissolved Organic Matter in Treated Effluents on Sorption of Atrazine and Prometryn by Soils. <i>Soil Science Society of America Journal</i> , 2000 , 64, 1976-1983	2.5	47
22	Effect of Substitution on Irreversible Binding and Transformation of Aromatic Amines with Soils in Aqueous Systems. <i>Environmental Science & Environmental Science & Environme</i>	10.3	38
21	Modeling Abiotic Processes of Aniline in Water-Saturated Soils. <i>Environmental Science & Eamp; Technology</i> , 2000 , 34, 1687-1693	10.3	9
20	Sorption and Abiotic Transformation of Aniline and ENaphthylamine by Surface Soils. <i>Environmental Science & Environmental Sci</i>	10.3	52
19	Modeling Short-Term SoilWater Distribution of Aromatic Amines. <i>Environmental Science & Environmental Science & Technology</i> , 1998 , 32, 2788-2794	10.3	34

18	3,3Dichlorobenzidine Transformation Processes in Natural Sediments. <i>Environmental Science & Environmental Science & Environmental Science</i>	10.3	12
17	Retention of imazaquin in soil. Environmental Toxicology and Chemistry, 1997, 16, 397-404	3.8	53
16	Initial sorption of aromatic amines to surface soils. <i>Environmental Toxicology and Chemistry</i> , 1997 , 16, 1575-1582	3.8	33
15	Retention of imazaquin in soil 1997 , 16, 397		1
14	Initial sorption of aromatic amines to surface soils 1997 , 16, 1575		2
13	Impact of Several Water-Miscible Organic Solvents on Sorption of Benzoic Acid by Soil. <i>Environmental Science & Description of Benzoic Acid by Soil.</i>	10.3	15
12	Evaluation of extraction and detection methods for determining polynuclear aromatic hydrocarbons from coal tar contaminated soils. <i>Chemosphere</i> , 1996 , 32, 1123-1132	8.4	28
11	Later is better: Projected USMLE performance during medical school. <i>Teaching and Learning in Medicine</i> , 1995 , 7, 163-167	3.4	5
10	Cosolvent effects on sorption of organic acids by soils from mixed solvents. <i>Environmental Science</i> & <i>amp; Technology</i> , 1993 , 27, 165-171	10.3	33
9	Equilibrium partitioning of polycyclic aromatic hydrocarbons from coal tar into water. <i>Environmental Science & Environmental </i>	10.3	152
8	Partitioning of polycyclic aromatic hydrocarbons from diesel fuel into water. <i>Environmental Science & Environmental & Environ</i>	10.3	144
7	Nonequilibrium sorption and transport of neutral and ionized chlorophenols. <i>Environmental Science</i> & amp; Technology, 1991, 25, 722-729	10.3	64
6	Prediction of the solubility of hydrophobic compounds in nonideal solvent mixtures. <i>Chemosphere</i> , 1991 , 22, 939-951	8.4	22
5	Cosolvency of partially miscible organic solvents on the solubility of hydrophobic organic chemicals. <i>Environmental Science & Environmental &</i>	10.3	62
4	Influence of solvent and sorbent characteristics on distribution of pentachlorophenol in octanol-water and soil-water systems. <i>Environmental Science & Environmental Science </i>	10.3	137
3	Cosolvency and sorption of hydrophobic organic chemicals. <i>Environmental Science & Emp; Technology</i> , 1990 , 24, 647-654	10.3	81
2	Comparison of sorption energetics for hydrophobic organic chemicals by synthetic and natural sorbents from methanol/water solvent mixtures. <i>Environmental Science & Environmental Science & Environme</i>	10.3	40
1	Sources, Fate, and Plant Uptake in Agricultural Systems of Per- and Polyfluoroalkyl Substances. Current Pollution Reports,1	7.6	11