
Paolino Ninfali

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9322445/publications.pdf Version: 2024-02-01

PAOLINO NINEALL

#	Article	IF	CITATIONS
1	Antioxidant capacity of vegetables, spices and dressings relevant to nutrition. British Journal of Nutrition, 2005, 93, 257-266.	1.2	228
2	Nutritional and functional potential of Beta vulgaris cicla and rubra. Fìtoterapìâ, 2013, 89, 188-199.	1.1	182
3	Polyphenols and Antioxidant Capacity of Vegetables under Fresh and Frozen Conditions. Journal of Agricultural and Food Chemistry, 2003, 51, 2222-2226.	2.4	108
4	Antiviral Properties of Flavonoids and Delivery Strategies. Nutrients, 2020, 12, 2534.	1.7	98
5	Enhancement of flavonoid ability to cross the blood–brain barrier of rats by co-administration with α-tocopherol. Food and Function, 2015, 6, 394-400.	2.1	92
6	The cellular antioxidant activity in red blood cells (CAA-RBC): A new approach to bioavailability and synergy of phytochemicals and botanical extracts. Food Chemistry, 2011, 125, 685-691.	4.2	73
7	Antioxidant capacity of extra-virgin olive oils. JAOCS, Journal of the American Oil Chemists' Society, 2001, 78, 243-247.	0.8	70
8	Phytochemicals as Innovative Therapeutic Tools against Cancer Stem Cells. International Journal of Molecular Sciences, 2015, 16, 15727-15742.	1.8	69
9	Characterization and biological activity of the main flavonoids from Swiss Chard (Beta vulgaris) Tj ETQq1 1 0.78	4314 rgB1 2.3	- /Overlock 10
10	Antioxidants in Extra Virgin Olive Oil and Table Olives: Connections between Agriculture and Processing for Health Choices. Antioxidants, 2020, 9, 41.	2.2	62
11	Comparison of bioactive phytochemical content and release of isothiocyanates in selected brassica sprouts. Food Chemistry, 2013, 141, 297-303.	4.2	60
12	Vitexin-2-O-xyloside, raphasatin and (â^')-epigallocatechin-3-gallate synergistically affect cell growth and apoptosis of colon cancer cells. Food Chemistry, 2013, 138, 1521-1530.	4.2	57
13	C-Glycosyl Flavonoids from <i>Beta vulgarisCicla</i> and Betalains from <i>Beta vulgarisrubra</i> : Antioxidant, Anticancer and Antiinflammatory Activities-A Review. Phytotherapy Research, 2017, 31, 871-884.	2.8	56
14	Rapid Purification of Glucose-6-phosphate Dehydrogenase from Mammal's Erythrocytes. Preparative Biochemistry and Biotechnology, 1990, 20, 297-309.	0.4	52
15	Validation of the oxygen radical absorbance capacity (ORAC) parameter as a new index of quality and stability of virgin olive oil. JAOCS, Journal of the American Oil Chemists' Society, 2002, 79, 977-982.	0.8	48
16	Phenolic compounds and quality parameters of family farming versus protected designation of origin (PDO) extra-virgin olive oils. Journal of Food Composition and Analysis, 2015, 43, 75-81.	1.9	45
17	A 3â€year Study on Quality, Nutritional and Organoleptic Evaluation of Organic and Conventional Extraâ€Virgin Olive Oils. JAOCS, Journal of the American Oil Chemists' Society, 2008, 85, 151-158.	0.8	41
18	Chemical and Cellular Antioxidant Activity of Phytochemicals Purified from Olive Mill Waste Waters. Journal of Agricultural and Food Chemistry, 2011, 59, 2011-2018.	2.4	41

PAOLINO NINFALI

#	Article	IF	CITATIONS
19	Total extract of <i>Beta Vulgaris</i> var. <i> Cicla</i> seeds versus its purified phenolic components: antioxidant activities and antiproliferative effects against colon cancer cells. Phytochemical Analysis, 2011, 22, 272-279.	1.2	37
20	Betalains increase vitexin-2-O-xyloside cytotoxicity in CaCo-2 cancer cells. Food Chemistry, 2017, 218, 356-364.	4.2	37
21	Variability of oxygen radical absorbance capacity (ORAC) in different animal species. Free Radical Research, 1998, 29, 399-408.	1.5	35
22	Rabbit red blood cell hexokinase. Purification and properties Journal of Biological Chemistry, 1980, 255, 1752-1756.	1.6	35
23	ORAC of chitosan and its derivatives. Food Hydrocolloids, 2012, 28, 243-247.	5.6	34
24	Posttranslational Regulation of Glucose-6-phosphate Dehydrogenase Activity in Tongue Epithelium. Journal of Histochemistry and Cytochemistry, 2000, 48, 971-977.	1.3	32
25	Electron Paramagnetic Resonance Investigations of Free Radicals in Extra Virgin Olive Oils. Journal of Agricultural and Food Chemistry, 2001, 49, 3691-3696.	2.4	32
26	Antifungal activity of Rubus ulmifolius Schott standardized in vitro culture. LWT - Food Science and Technology, 2008, 41, 946-950.	2.5	31
27	Antiproliferative activity of vitexin-2-O-xyloside and avenanthramides on CaCo-2 and HepG2 cancer cells occurs through apoptosis induction and reduction of pro-survival mechanisms. European Journal of Nutrition, 2018, 57, 1381-1395.	1.8	31
28	Rabbit red blood cell hexokinase. Purification and properties. Journal of Biological Chemistry, 1980, 255, 1752-6.	1.6	30
29	Vanadate affects glucose metabolism of human erythrocytes. Archives of Biochemistry and Biophysics, 1983, 226, 441-447.	1.4	27
30	IN VIVO ACCELERATED ACETALDEHYDE METABOLISM USING ACETALDEHYDE DEHYDROGENASE-LOADED ERYTHROCYTES. Alcohol and Alcoholism, 1990, 25, 627-637.	0.9	26
31	Fruit and Vegetable Antioxidants in Health. , 2010, , 37-58.		26
32	Caecal absorption of vitexin-2-O-xyloside and its aglycone apigenin, in the rat. Food and Function, 2013, 4, 1339.	2.1	26
33	Tocopherols Enhance Neurogenesis in Dentate Gyrus of Adult Rats. International Journal for Vitamin and Nutrition Research, 2002, 72, 170-176.	0.6	25
34	Betacyanins enhance vitexin-2-O-xyloside mediated inhibition of proliferation of T24 bladder cancer cells. Food and Function, 2016, 7, 4772-4780.	2.1	25
35	A Combination of Moringin and Avenanthramide 2f Inhibits the Proliferation of Hep3B Liver Cancer Cells Inducing Intrinsic and Extrinsic Apoptosis. Nutrition and Cancer, 2018, 70, 1159-1165.	0.9	23
36	Acetaldehyde Dehydrogenase-Loaded Erythrocytes as Bioreactors for the Removal of Blood Acetaldehyde. Alcoholism: Clinical and Experimental Research, 1989, 13, 849-849.	1.4	22

PAOLINO NINFALI

#	Article	IF	CITATIONS
37	Improvement in Botanical Standardization of Commercial Freeze-Dried Herbal Extracts by Using the Combination of Antioxidant Capacity and Constituent Marker Concentrations. Journal of AOAC INTERNATIONAL, 2009, 92, 797-805.	0.7	22
38	Nutritional characterization of naked and dehulled oat cultivar samples at harvest and after storage. Journal of Cereal Science, 2016, 72, 46-53.	1.8	22
39	Methods for studying the glucose-6-phosphate dehydrogenase activity in brain areas. Brain Research Protocols, 1997, 1, 357-363.	1.7	21
40	Action of oxidized and reduced glutathione on rabbit red blood cell hexokinase. Biochimica Et Biophysica Acta - Biomembranes, 1980, 615, 113-120.	1.4	20
41	Molecular analysis of G6PD variants in northern Italy: a study on the population from the Ferrara district. Human Genetics, 1993, 92, 139-42.	1.8	20
42	Morphological analysis of the seeds of three pseudocereals by using light microscopy and ESEM-EDS. European Journal of Histochemistry, 2020, 64, .	0.6	19
43	Rabbit brain glucose-6-phosphate dehydrogenase: biochemical properties and inactivation by free radicals and 4-hydroxy-2-nonenal. NeuroReport, 2001, 12, 4149-4153.	0.6	18
44	In vitro neuroprotection by novel antioxidants in guinea-pig urinary bladder subjected to anoxia-glucopenia/reperfusion damage. Naunyn-Schmiedeberg's Archives of Pharmacology, 2004, 370, 521-528.	1.4	18
45	Natural and synthetic avenanthramides activate caspases 2, 8, 3 and downregulate hTERT, MDR1 and COX-2 genes in CaCo-2 and Hep3B cancer cells. Food and Function, 2018, 9, 2913-2921.	2.1	16
46	Postnatal expression of glucose-6-phosphate dehydrogenase in different brain areas. Neurochemical Research, 1998, 23, 1197-1204.	1.6	15
47	Muscle expression of glucoseâ€6â€phosphate dehydrogenase deficiency in different variants. Clinical Genetics, 1995, 48, 232-237.	1.0	15
48	Quantity and quality of secoiridoids and lignans in extra virgin olive oils: the effect of two- and three-way decanters on Leccino and Raggiola olive cultivars. International Journal of Food Sciences and Nutrition, 2016, 67, 9-15.	1.3	15
49	Glucose-6-phosphate dehydrogenase activity is higher in the olfactory bulb than in other brain areas. Brain Research, 1997, 744, 138-142.	1.1	14
50	Cytochemical and immunocytochemical methods for electron microscopic detection of glucose-6-phosphate dehydrogenase in brain areas. Brain Research Protocols, 2000, 5, 115-120.	1.7	14
51	NADPH-consuming enzymes correlate with glucose-6-phosphate dehydrogenase in Purkinje cells: an immunohistochemical and enzyme histochemical study of the rat cerebellar cortex. Neuroscience Research, 2005, 51, 185-197.	1.0	14
52	<i>Isatis canescens</i> is a rich source of glucobrassicin and other health-promoting compounds. Journal of the Science of Food and Agriculture, 2015, 95, 158-164.	1.7	14
53	Glucose-6-phosphate dehydrogenase expression associated with NADPH-dependent reactions in cerebellar neurons. Cerebellum, 2003, 2, 178-183.	1.4	13
54	Rabbit bone marrow glucose-6-phosphate dehydrogenase during erythroid cell development. Molecular and Cellular Biochemistry, 1987, 75, 85-92.	1.4	12

PAOLINO NINFALI

#	Article	IF	CITATIONS
55	Gas chromatographic determination of acetaldehyde and acetone in human blood by purge and trap, using permeation tubes for calibration. Journal of Chromatography A, 1988, 437, 294-300.	1.8	12
56	Glucose-6-phosphate dehydrogenase and glutathione reductase support antioxidant enzymes in nerves and muscles of rats during nerve regeneration. Restorative Neurology and Neuroscience, 1996, 10, 69-75.	0.4	12
57	The Mediterranean Diet in the era of globalization: The need to support knowledge of healthy dietary factors in the new socio-economical framework. Mediterranean Journal of Nutrition and Metabolism, 2014, 7, 75-86.	0.2	12
58	Novel insights into pericarp, protein body globoids of aleurone layer, starchy granules of three cereals gained using atomic force microscopy and environmental scanning electronic microscopy. European Journal of Histochemistry, 2018, 62, 2869.	0.6	12
59	Human erythrocyte phosphoglucomutase: comparison of the kinetic properties of PGM1 and PGM2 isoenzymes. Biochimie, 1984, 66, 617-623.	1.3	11
60	In vitro bioaccessibility of avenanthramides in cookies made with malted oat flours. International Journal of Food Science and Technology, 2019, 54, 1558-1565.	1.3	11
61	Comparative study on glucose-6-phosphate dehydrogenase from rabbit tissues. The Journal of Experimental Zoology, 1990, 254, 6-12.	1.4	10
62	Glucose-6-phosphate dehydrogenase activity and protein turnover in erythroblasts separated by velocity sedimentation at unit gravity and percoll gradient centrifugation. Molecular and Cellular Biochemistry, 1991, 106, 151-60.	1.4	10
63	Glucose-6-phosphate dehydrogenase supports the functioning of the synapses in rat cerebellar cortex. Brain Research, 2001, 911, 152-157.	1.1	10
64	Glucose-6-Phosphate Dehydrogenase Activity in Dorsal Root Ganglia of Vitamin E-Deficient Rats. Annals of Nutrition and Metabolism, 1991, 35, 174-180.	1.0	9
65	Muscle glucose 6-phosphate dehydrogenase (G6PD) deficiency and oxidant stress during physical exercise. Cell Biochemistry and Function, 1995, 13, 297-298.	1.4	9
66	The effect of mechanical processing on avenanthramide and phenol levels in two organically grown Italian oat cultivars. Journal of Food Science and Technology, 2017, 54, 2279-2287.	1.4	9
67	Goat Immunoglobulin Purification on Phosphocellulose and Deae Affi -Gel Blue. Preparative Biochemistry and Biotechnology, 1994, 24, 1-13.	0.4	8
68	Three new mutations (P183T, V150L, 528insG) and eleven sequence polymorphisms in Italian patients with galactose-1-phosphate uridyltransferase (GALT) deficiency. , 1996, 8, 369-372.		8
69	High glucose-6-phosphate dehydrogenase activity contributes to the structural plasticity of periglomerular cells in the olfactory bulb of adult rats. Brain Research, 1999, 819, 150-154.	1.1	8
70	The ORAC/kcal ratio qualifies nutritional and functional properties of fruit juices, nectars, and fruit drinks. International Journal of Food Sciences and Nutrition, 2014, 65, 708-712.	1.3	8
71	The histology of grain caryopses for nutrient location: a comparative study of six cereals. International Journal of Food Science and Technology, 2017, 52, 1238-1245.	1.3	8
72	Comparison of reduced sugar high quality chocolates sweetened with stevioside and crude stevia â€~green' extract. Journal of the Science of Food and Agriculture, 2017, 97, 2346-2352.	1.7	8

Paolino Ninfali

#	Article	IF	CITATIONS
73	Iron release and oxidant damage in human myoblasts by divicine. Life Sciences, 2000, 66, PL85-PL91.	2.0	7
74	Glucose-6-phosphate dehydrogenase in small intestine of rabbit: biochemical properties and subcellular localization. Acta Histochemica, 2001, 103, 287-303.	0.9	7
75	Assessment of antioxidant capacity of energy drinks, energy gels and sport drinks in comparison with coffee and tea. International Journal of Food Science and Technology, 2015, 50, 240-248.	1.3	7
76	Quantification of G6PD in small and large intestine of rat during aging. Acta Histochemica, 2002, 104, 225-234.	0.9	6
77	Glucose-6-phosphate dehydrogenase and NADPH-consuming enzymes in the rat olfactory bulb. Journal of Neuroscience Research, 2005, 80, 434-441.	1.3	6
78	An enzyme-linked immunosorbent assay for the measurement of plasma flavonoids in mice fed apigenin-C -glycoside. Journal of the Science of Food and Agriculture, 2013, 93, 3087-3093.	1.7	6
79	Clinical and biochemical evidence of skeletal muscle involvement in galactose-1-phosphate uridyl transferase deficiency. Journal of Neurology, 1993, 240, 272-277.	1.8	5
80	Industrial freezing, cooking, and storage differently affect antioxidant nutrients in vegetables. , 2016, , 23-39.		5
81	Glucose-1,6-P2 synthesis, phosphoglucomutase and phosphoribomutase correlate with glucose-1,6-P2 concentration in mammals' red blood cells. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1985, 80, 839-842.	0.2	4
82	Action of Acetaldehyde on Glucose Metabolism of Newborn and Adult Erythrocytes. Neonatology, 1987, 52, 256-263.	0.9	3
83	Molecular basis of galactose-1-phosphate uridyltransferase deficiency involving skeletal muscle. Journal of Neurology, 1995, 243, 102-103.	1.8	3
84	Interaction of ATP with erythroblast glucoseâ€6â€phosphate dehydrogenase. IUBMB Life, 1996, 39, 377-385.	1.5	2
85	Heme oxygenase-2 is present in the sarcolemma region of skeletal muscle fibers and is non-continuously co-localized with nitric oxide synthase-1. Acta Histochemica, 2000, 102, 339-352.	0.9	2
86	Acetaldehyde Oxidation by Aldehyde Dehydrogenase Loaded Erythrocytes. Advances in Experimental Medicine and Biology, 1992, 326, 165-173.	0.8	2
87	Glucose-6-phosphate dehydrogenase expression associated with NADPH-dependent reactions in cerebellar neurons. Cerebellum, 2003, 2, 178-183.	1.4	2
88	Improvement in botanical standardization of commercial freeze-dried herbal extracts by using the combination of antioxidant capacity and constituent marker concentrations. Journal of AOAC INTERNATIONAL, 2009, 92, 797-805.	0.7	2
89	Red cell metabolism affects lactate and pyruvate partition across the plasma membrane. Archives Internationales De Physiologie Et De Biochimie, 1983, 91, 417-422.	0.2	1
90	Title is missing!. Biotechnology Letters, 2001, 23, 353-357.	1.1	1

#	Article	IF	CITATIONS
91	A morphological analysis of fresh and brine-cured olives attacked by Bactrocera oleae using light microscopy and ESEM-EDS. European Journal of Histochemistry, 2020, 64, .	0.6	1
92	A morphological analysis of fresh and brine-cured olives attacked by Bactrocera oleae<:/em>: using light microscopy and FSEM-FDS_European Journal of Histochemistry, 2020, 64	0.6	1

92 oleae using light microscopy and ESEM-EDS. European Journal of Histochemistry, 2020, 64, .