Nina Hakulinen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9322442/publications.pdf

Version: 2024-02-01

42 papers

1,143 citations

430874 18 h-index 377865 34 g-index

42 all docs 42 docs citations

times ranked

42

1572 citing authors

#	Article	IF	Citations
1	Threeâ€dimensional structure of xylonolactonase from <i>Caulobacter crescentus</i> : A mononuclear iron enzyme of the 6â€bladed βâ€propeller hydrolase family. Protein Science, 2022, 31, 371-383.	7.6	4
2	Boosting enzymatic degradation of cellulose using a fungal expansin: Structural insight into the pretreatment mechanism. Bioresource Technology, 2022, 358, 127434.	9.6	6
3	Patulin Detoxification by Recombinant Manganese Peroxidase from Moniliophthora roreri Expressed by Pichia pastoris. Toxins, 2022, 14, 440.	3.4	13
4	Polysaccharide utilization loci-driven enzyme discovery reveals BD-FAE: a bifunctional feruloyl and acetyl xylan esterase active on complex natural xylans. Biotechnology for Biofuels, 2021, 14, 127.	6.2	10
5	Cysteine Engineering of an Endo-polygalacturonase from <i>Talaromyces leycettanus</i> JCM 12802 to Improve Its Thermostability. Journal of Agricultural and Food Chemistry, 2021, 69, 6351-6359.	5.2	7
6	Current state of and need for enzyme engineering of 2-deoxy-D-ribose 5-phosphate aldolases and its impact. Applied Microbiology and Biotechnology, 2021, 105, 6215-6228.	3.6	7
7	Crystallization of 3-hexulose-6-phosphate synthase. European Journal of Chemistry, 2021, 12, 299-303.	0.6	0
8	Structural Insights into the Mechanisms Underlying the Kinetic Stability of GH28 Endo-Polygalacturonase. Journal of Agricultural and Food Chemistry, 2021, 69, 815-823.	5.2	7
9	Xylonolactonase from <i>Caulobacter crescentus</i> Is a Mononuclear Nonheme Iron Hydrolase. Biochemistry, 2021, 60, 3046-3049.	2.5	4
10	Improving the catalytic performance of Proteinase K from Parengyodontium album for use in feather degradation. International Journal of Biological Macromolecules, 2020, 154, 1586-1595.	7.5	24
11	Substrate specificity of 2-deoxy-D-ribose 5-phosphate aldolase (DERA) assessed by different protein engineering and machine learning methods. Applied Microbiology and Biotechnology, 2020, 104, 10515-10529.	3.6	21
12	The crystal structure of D-xylonate dehydratase reveals functional features of enzymes from the IIv/ED dehydratase family. Scientific Reports, 2018, 8, 865.	3.3	21
13	Unraveling Substrate Specificity and Catalytic Promiscuity of <i>Aspergillus oryzae</i> Catechol Oxidase. ChemBioChem, 2018, 19, 2348-2352.	2.6	9
14	A new crystal form of Aspergillus oryzae catechol oxidase and evaluation of copper site structures in coupled binuclear copper enzymes. PLoS ONE, 2018, 13, e0196691.	2.5	8
15	The Crystal Structure of a Bacterial l-Arabinonate Dehydratase Contains a [2Fe-2S] Cluster. ACS Chemical Biology, 2017, 12, 1919-1927.	3.4	25
16	Insights into the roles of non-catalytic residues in the active site of a GH10 xylanase with activity on cellulose. Journal of Biological Chemistry, 2017, 292, 19315-19327.	3.4	35
17	Characterization and mutagenesis of two novel iron–sulphur cluster pentonate dehydratases. Applied Microbiology and Biotechnology, 2016, 100, 7549-7563.	3.6	27
18	Crystallization and X-ray diffraction analysis of an <scp>L</scp> -arabinonate dehydratase from <i>Rhizobium leguminosarum</i> bv. <i>trifolii</i> and a <scp>D</scp> -xylonate dehydratase from <i>Caulobacter crescentus</i> Acta Crystallographica Section F, Structural Biology Communications, 2016, 72, 604-608.	0.8	3

#	Article	IF	CITATIONS
19	Structure and function of <i>Caulobacter crescentus</i> aldose–aldose oxidoreductase. Biochemical Journal, 2015, 472, 297-307.	3.7	10
20	Structure and Function of a Decarboxylating <i>Agrobacterium tumefaciens</i> Keto-deoxy- <scp>d</scp> -galactarate Dehydratase. Biochemistry, 2014, 53, 8052-8060.	2.5	9
21	Purification, crystallization and preliminary X-ray diffraction analysis of a novel keto-deoxy-D-galactarate (KDG) dehydratase fromAgrobacterium tumefaciens. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 49-52.	0.8	4
22	The crystal structure of an extracellular catechol oxidase from the ascomycete fungus Aspergillus oryzae. Journal of Biological Inorganic Chemistry, 2013, 18, 917-929.	2.6	40
23	Crystal structure of galactarolactone cycloisomerase from Agrobacterium tume faciens. Acta Crystallographica Section A: Foundations and Advances, 2013, 69, s306-s307.	0.3	0
24	Structural analysis, enzymatic characterization, and catalytic mechanisms of βâ€galactosidase from ⟨i⟩Bacillusâ€fcirculans⟨ i⟩ sp. ⟨i⟩alkalophilus⟨ i⟩. FEBS Journal, 2012, 279, 1788-1798.	4.7	59
25	Probing the Dioxygen Route in <i>Melanocarpus albomyces</i> Laccase with Pressurized Xenon Gas. Biochemistry, 2011, 50, 4396-4398.	2.5	19
26	Linear birefringence magnitude of artificial self-assembled DNA crystals. Optical Materials Express, 2011, 1, 936.	3.0	1
27	Crystal structures of Trichoderma reesei \hat{l}^2 -galactosidase reveal conformational changes in the active site. Journal of Structural Biology, 2011, 174, 156-163.	2.8	47
28	Crystal structure of an ascomycete fungal laccase from <i>Thielaviaâ€∫arenaria</i> àê∫–â€∫common structural features of asco″accases. FEBS Journal, 2011, 278, 2283-2295.	4.7	71
29	Crystallization and preliminary X-ray analysis of Aspergillus oryzaecatechol oxidase. Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 672-674.	0.7	5
30	The Contribution of Polystyrene Nanospheres towards the Crystallization of Proteins. PLoS ONE, 2009, 4, e4198.	2.5	24
31	Crystallization and preliminary diffraction analysis of a \hat{I}^2 -galactosidase from Trichoderma reesei. Acta Crystallographica Section F: Structural Biology Communications, 2009, 65, 767-769.	0.7	3
32	Preliminary X-ray analysis of twinned crystals of sarcosine dimethylglycine methyltransferase fromHalorhodospira halochoris. Acta Crystallographica Section F: Structural Biology Communications, 2009, 65, 805-808.	0.7	1
33	Essential role of the Câ€terminus in <i>Melanocarpus albomyces</i> laccase for enzyme production, catalytic properties and structure. FEBS Journal, 2009, 276, 6285-6300.	4.7	73
34	A crystallographic and spectroscopic study on the effect of X-ray radiation on the crystal structure of Melanocarpus albomyces laccase. Biochemical and Biophysical Research Communications, 2006, 350, 929-934.	2.1	49
35	Determination of thioxylo-oligosaccharide binding to family 11 xylanases using electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry and X-ray crystallography. FEBS Journal, 2005, 272, 2317-2333.	4.7	28
36	Crystallization and preliminary X-ray characterization of Trichoderma reeseihydrophobin HFBII. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 163-165.	2.5	16

#	Article	IF	CITATION
37	A Novel Laccase from the Ascomycete Melanocarpus albomyces. ACS Symposium Series, 2003, , 315-331.	0.5	1
38	Three-dimensional structures of thermophilic beta-1,4-xylanases from Chaetomium thermophilum and Nonomuraea flexuosa. Comparison of twelve xylanases in relation to their thermal stability. FEBS Journal, 2003, 270, 1399-1412.	0.2	188
39	Crystal structure of a laccase from Melanocarpus albomyces with an intact trinuclear copper site. Nature Structural Biology, 2002, 9, 601-5.	9.7	151
40	The Crystal Structure of \hat{l}^2 -Glucosidase from Bacillus circulans sp. alkalophilus: Ability to Form Long Polymeric Assemblies. Journal of Structural Biology, 2000, 129, 69-79.	2.8	43
41	Three-Dimensional Structure of the Catalytic Core of Acetylxylan Esterase from Trichoderma reesei: Insights into the Deacetylation Mechanism. Journal of Structural Biology, 2000, 132, 180-190.	2.8	66
42	Crystallization and preliminary X-ray diffraction studies of the catalytic core of acetyl xylan esterase from Trichoderma reesei. Acta Crystallographica Section D: Biological Crystallography, 1998, 54, 430-432.	2.5	4