
Ruixia Yuan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9322353/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of chloride ion on degradation of Acid Orange 7 by sulfate radical-based advanced oxidation process: Implications for formation of chlorinated aromatic compounds. Journal of Hazardous Materials, 2011, 196, 173-179.	12.4	502
2	Uncertainty and misinterpretation over identification, quantification and transformation of reactive species generated in catalytic oxidation processes: A review. Journal of Hazardous Materials, 2021, 408, 124436.	12.4	297
3	Photocatalytic degradation of tetracycline antibiotic by a novel Bi2Sn2O7/Bi2MoO6 S-scheme heterojunction: Performance, mechanism insight and toxicity assessment. Chemical Engineering Journal, 2022, 429, 132519.	12.7	279
4	Effects of chloride ions on bleaching of azo dyes by Co2+/oxone regent: Kinetic analysis. Journal of Hazardous Materials, 2011, 190, 1083-1087.	12.4	273
5	In situ construction of WO3 nanoparticles decorated Bi2MoO6 microspheres for boosting photocatalytic degradation of refractory pollutants. Journal of Colloid and Interface Science, 2019, 556, 335-344.	9.4	219
6	Superamphiphobic and Electroactive Nanocomposite toward Self-Cleaning, Antiwear, and Anticorrosion Coatings. ACS Applied Materials & amp; Interfaces, 2016, 8, 12481-12493.	8.0	145
7	3D mesoporous α-Co(OH)2 nanosheets electrodeposited on nickel foam: A new generation of macroscopic cobalt-based hybrid for peroxymonosulfate activation. Chemical Engineering Journal, 2020, 380, 122447.	12.7	127
8	Photocatalytic degradation and chlorination of azo dye in saline wastewater: Kinetics and AOX formation. Chemical Engineering Journal, 2012, 192, 171-178.	12.7	123
9	Nanostructured Co3O4 grown on nickel foam: An efficient and readily recyclable 3D catalyst for heterogeneous peroxymonosulfate activation. Chemosphere, 2018, 198, 204-215.	8.2	109
10	Enhanced degradation of Tetrabromobisphenol A in water by a UV/base/persulfate system: Kinetics and intermediates. Chemical Engineering Journal, 2014, 254, 538-544.	12.7	106
11	Non-radical reactions in persulfate-based homogeneous degradation processes: A review. Chemical Engineering Journal, 2021, 421, 127818.	12.7	103
12	Transformations of chloro and nitro groups during the peroxymonosulfate-based oxidation of 4-chloro-2-nitrophenol. Chemosphere, 2015, 134, 446-451.	8.2	100
13	Sulfate radical-induced degradation of 2,4,6-trichlorophenol: A de novo formation of chlorinated compounds. Chemical Engineering Journal, 2013, 217, 169-173.	12.7	97
14	Significantly enhanced base activation of peroxymonosulfate by polyphosphates: Kinetics and mechanism. Chemosphere, 2017, 173, 529-534.	8.2	96
15	A robust superhydrophobic PVDF composite coating with wear/corrosion-resistance properties. Applied Surface Science, 2015, 332, 518-524.	6.1	95
16	Hierarchical MnO2 nanoflowers blooming on 3D nickel foam: A novel micro-macro catalyst for peroxymonosulfate activation. Journal of Colloid and Interface Science, 2020, 571, 142-154.	9.4	94
17	Probing the radical chemistry in UV/persulfate-based saline wastewater treatment: Kinetics modeling and byproducts identification. Chemosphere, 2014, 109, 106-112.	8.2	91
18	Co3O4 nanocrystals/3D nitrogen-doped graphene aerogel: A synergistic hybrid for peroxymonosulfate activation toward the degradation of organic pollutants. Chemosphere, 2018, 210, 877-888.	8.2	81

Ruixia Yuan

#	Article	IF	CITATIONS
19	Deciphering the degradation/chlorination mechanisms of maleic acid in the Fe(II)/peroxymonosulfate process: An often overlooked effect of chloride. Water Research, 2018, 145, 453-463.	11.3	73
20	Enhanced AOX accumulation and aquatic toxicity during 2,4,6-trichlorophenol degradation in a Co(II)/peroxymonosulfate/Clâ^' system. Chemosphere, 2016, 144, 2415-2420.	8.2	72
21	Monochlorophenols degradation by UV/persulfate is immune to the presence of chloride: Illusion or reality?. Chemical Engineering Journal, 2017, 323, 124-133.	12.7	65
22	Design ambient-curable superhydrophobic/electroactive coating toward durable pitting corrosion resistance. Chemical Engineering Journal, 2019, 374, 840-851.	12.7	63
23	Concentration profiles of chlorine radicals and their significances in •OH-induced dye degradation: Kinetic modeling and reaction pathways. Chemical Engineering Journal, 2012, 209, 38-45.	12.7	60
24	Superamphiphobicity and electroactivity enabled dual physical/chemical protections in novel anticorrosive nanocomposite coatings. Polymer, 2016, 85, 37-46.	3.8	46
25	Effects of chloride on PMS-based pollutant degradation: A substantial discrepancy between dyes and their common decomposition intermediate (phthalic acid). Chemosphere, 2017, 187, 338-346.	8.2	45
26	Is addition of reductive metals (Mo, W) a panacea for accelerating transition metals-mediated peroxymonosulfate activation?. Journal of Hazardous Materials, 2020, 386, 121877.	12.4	44
27	Light-assisted decomposition of dyes over iron-bearing soil clays in the presence of H2O2. Journal of Hazardous Materials, 2009, 168, 1246-1252.	12.4	41
28	Oxidative degradation of iodinated X-ray contrast media (iomeprol and iohexol) with sulfate radical: An experimental and theoretical study. Chemical Engineering Journal, 2019, 368, 999-1012.	12.7	41
29	Degradation of reactive dyes by contact glow discharge electrolysis in the presence of Clâ^' ions: Kinetics and AOX formation. Electrochimica Acta, 2011, 58, 364-371.	5.2	40
30	The mixed marriage of copper and carbon ring-g-C3N4 nanosheet: A visible-light-driven heterogeneous Fenton-like catalyst. Applied Surface Science, 2019, 488, 728-738.	6.1	38
31	Photochemical origin of reactive radicals and halogenated organic substances in natural waters: A review. Journal of Hazardous Materials, 2021, 401, 123884.	12.4	37
32	An often-overestimated adverse effect of halides in heat/persulfate-based degradation of wastewater contaminants. Environment International, 2019, 130, 104918.	10.0	36
33	Enabling simultaneous redox transformation of toxic chromium(VI) and arsenic(III) in aqueous media—A review. Journal of Hazardous Materials, 2021, 417, 126041.	12.4	34
34	Both degradation and AOX accumulation are significantly enhanced in UV/peroxymonosulfate/4-chlorophenol/Cl ^{â^'} system: two sides of the same coin?. RSC Advances, 2017, 7, 12318-12321.	3.6	33
35	Superhydrophobic polyaniline hollow spheres with mesoporous brain-like convex-fold shell textures. Journal of Materials Chemistry A, 2015, 3, 19299-19303.	10.3	28
36	On peroxymonosulfate-based treatment of saline wastewater: when phosphate and chloride co-exist. RSC Advances, 2018, 8, 13865-13870.	3.6	26

Ruixia Yuan

#	Article	IF	CITATIONS
37	Enhancement of adhesion, mechanical strength and anti-corrosion by multilayer superhydrophobic coating embedded electroactive PANI/CNF nanocomposite. Journal of Polymer Research, 2018, 25, 1.	2.4	26
38	Transformation of endogenic and exogenic Cl/Br in peroxymonosulfate-based processes: The importance of position of Cl/Br attached to the phenolic ring. Chemical Engineering Journal, 2020, 381, 122634.	12.7	26
39	Chlorine incorporation into dye degradation by-product (coumarin) in UV/peroxymonosulfate process: A negative case of end-of-pipe treatment. Chemosphere, 2019, 229, 374-382.	8.2	25
40	Accelerated oxidation of 2,4,6-trichlorophenol in Cu(II)/H2O2/Cl- system: A unique "halotolerant― Fenton-like process?. Environment International, 2019, 132, 105128.	10.0	22
41	Abiotic oxidation of arsenite in natural and engineered systems: Mechanisms and related controversies over the last two decades (1999–2020). Journal of Hazardous Materials, 2021, 414, 125488.	12.4	22
42	Resistance of alkyl chloride on chloramphenicol to oxidative degradation by sulfate radicals: Kinetics and mechanism. Chemical Engineering Journal, 2021, 415, 129041.	12.7	21
43	Facile fabrication approach for a novel multifunctional superamphiphobic coating based on chemically grafted montmorillonite/Al2O3-polydimethylsiloxane binary nanocomposite. Journal of Polymer Research, 2017, 24, 1.	2.4	19
44	Efficient degradation of industrial pollutants with sulfur (IV) mediated by LiCoO2 cathode powders of spent lithium ion batteries: A "treating waste with waste―strategy. Journal of Hazardous Materials, 2020, 399, 123090.	12.4	19
45	Ultrahigh-flux (>190,000†L·mâ^'2hâ^'1) separation of oil and water by a robust and durable Cu(OH)2 nanoneedles mesh with inverse wettability. Journal of Colloid and Interface Science, 2019, 555, 569-582.	9.4	18
46	Effects of exogenic chloride on oxidative degradation of chlorinated azo dye by UV-activated peroxodisulfate. Chinese Chemical Letters, 2021, 32, 2544-2550.	9.0	18
47	Performance of UV/acetylacetone process for saline dye wastewater treatment: Kinetics and mechanism. Journal of Hazardous Materials, 2021, 406, 124774.	12.4	17
48	Trace bromide ion impurity leads to formation of chlorobromoaromatic by-products in peroxymonosulfate-based oxidation of chlorophenols. Chemosphere, 2017, 182, 624-629.	8.2	16
49	Can electrochemical oxidation techniques really decontaminate saline dyes wastewater?. Journal of Environmental Chemical Engineering, 2015, 3, 1648-1653.	6.7	14
50	Robust and switchable superwetting sponge-like membrane: Towards on-demand emulsion separation and aqueous pollutant degradation. Separation and Purification Technology, 2021, 258, 117469.	7.9	10
51	Non-radical pathway dominated by singlet oxygen under high salinity condition towards efficient degradation of organic pollutants and inhibition of AOX formation. Separation and Purification Technology, 2022, 291, 120921.	7.9	9
52	Resolving the kinetic and intrinsic constraints of heat-activated peroxydisulfate oxidation of iopromide in aqueous solution. Journal of Hazardous Materials, 2020, 384, 121281.	12.4	3