List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9322077/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cytotoxicity and mitochondrial damage caused by silica nanoparticles. Toxicology in Vitro, 2011, 25, 1619-1629.	1.1	225
2	Silica nanoparticles induce oxidative stress, inflammation, and endothelial dysfunction in vitro via activation of the MAPK/Nrf2 pathway and nuclear factor-κB signaling. International Journal of Nanomedicine, 2015, 10, 1463.	3.3	197
3	Dual-SERS biosensor for one-step detection of microRNAs in exosome and residual plasma of blood samples for diagnosing pancreatic cancer. Biosensors and Bioelectronics, 2019, 130, 204-213.	5.3	193
4	Fe3O4@Ag magnetic nanoparticles for microRNA capture and duplex-specific nuclease signal amplification based SERS detection in cancer cells. Biosensors and Bioelectronics, 2016, 79, 574-580.	5.3	180
5	Cardiovascular toxicity evaluation of silica nanoparticles in endothelial cells and zebrafish model. Biomaterials, 2013, 34, 5853-5862.	5.7	178
6	Amorphous silica nanoparticles trigger vascular endothelial cell injury through apoptosis and autophagy via reactive oxygen species-mediated MAPK/Bcl-2 and PI3K/Akt/mTOR signaling. International Journal of Nanomedicine, 2016, Volume 11, 5257-5276.	3.3	176
7	Toxic Effect of Silica Nanoparticles on Endothelial Cells through DNA Damage Response via Chk1-Dependent G2/M Checkpoint. PLoS ONE, 2013, 8, e62087.	1.1	174
8	Size-dependent cytotoxicity of amorphous silica nanoparticles in human hepatoma HepG2 cells. Toxicology in Vitro, 2011, 25, 1343-1352.	1.1	167
9	Toxic Effects of Silica Nanoparticles on Zebrafish Embryos and Larvae. PLoS ONE, 2013, 8, e74606.	1.1	166
10	Radiation-Sensitive Diselenide Block Co-polymer Micellar Aggregates: Toward the Combination of Radiotherapy and Chemotherapy. Langmuir, 2011, 27, 5874-5878.	1.6	152
11	Silica nanoparticles induce autophagy dysfunction via lysosomal impairment and inhibition of autophagosome degradation in hepatocytes. International Journal of Nanomedicine, 2017, Volume 12, 809-825.	3.3	152
12	Personalized detection of circling exosomal PD-L1 based on Fe3O4@TiO2 isolation and SERS immunoassay. Biosensors and Bioelectronics, 2020, 148, 111800.	5.3	150
13	Silica nanoparticles induce autophagy and autophagic cell death in HepG2 cells triggered by reactive oxygen species. Journal of Hazardous Materials, 2014, 270, 176-186.	6.5	148
14	Supramolecular Chemotherapy: Cooperative Enhancement of Antitumor Activity by Combining Controlled Release of Oxaliplatin and Consuming of Spermine by Cucurbit[7]uril. ACS Applied Materials & Interfaces, 2017, 9, 8602-8608.	4.0	148
15	Silica nanoparticles induce autophagy and endothelial dysfunction via the PI3K/Akt/mTOR signaling pathway. International Journal of Nanomedicine, 2014, 9, 5131.	3.3	145
16	Dual-recognition surface-enhanced Raman scattering(SERS)biosensor for pathogenic bacteria detection by using vancomycin-SERS tags and aptamer-Fe3O4@Au. Analytica Chimica Acta, 2019, 1077, 288-296.	2.6	142
17	Cardiovascular Toxicity of Different Sizes Amorphous Silica Nanoparticles in Rats After Intratracheal Instillation. Cardiovascular Toxicology, 2013, 13, 194-207.	1.1	126
18	Low-dose exposure of silica nanoparticles induces cardiac dysfunction via neutrophil-mediated inflammation and cardiac contraction in zebrafish embryos. Nanotoxicology, 2016, 10, 575-585.	1.6	112

#	Article	IF	CITATIONS
19	Silica nanoparticles enhance autophagic activity, disturb endothelial cell homeostasis and impair angiogenesis. Particle and Fibre Toxicology, 2014, 11, 50.	2.8	110
20	Mitochondrial dysfunction, perturbations of mitochondrial dynamics and biogenesis involved in endothelial injury induced by silica nanoparticles. Environmental Pollution, 2018, 236, 926-936.	3.7	107
21	Coordination-responsive selenium-containing polymer micelles for controlled drug release. Chemical Science, 2012, 3, 3403.	3.7	102
22	1 H NMR-based metabolomics study on repeat dose toxicity of fine particulate matter in rats after intratracheal instillation. Science of the Total Environment, 2017, 589, 212-221.	3.9	99
23	PM2.5 induces male reproductive toxicity via mitochondrial dysfunction, DNA damage and RIPK1 mediated apoptotic signaling pathway. Science of the Total Environment, 2018, 634, 1435-1444.	3.9	95
24	Acute Toxicity of Amorphous Silica Nanoparticles in Intravenously Exposed ICR Mice. PLoS ONE, 2013, 8, e61346.	1.1	95
25	Red light responsive diselenide-containing block copolymer micelles. Journal of Materials Chemistry B, 2013, 1, 740-743.	2.9	92
26	Legacy and novel brominated flame retardants in indoor dust from Beijing, China: Occurrence, human exposure assessment and evidence for PBDEs replacement. Science of the Total Environment, 2018, 618, 48-59.	3.9	84
27	Cardiovascular toxicity of decabrominated diphenyl ethers (BDE-209) and decabromodiphenyl ethane (DBDPE) in rats. Chemosphere, 2019, 223, 675-685.	4.2	81
28	Cytotoxicity Regulated by Host–Guest Interactions: A Supramolecular Strategy to Realize Controlled Disguise and Exposure. ACS Applied Materials & Interfaces, 2016, 8, 22780-22784.	4.0	79
29	Supramolecular Chemotherapy: Carboxylated Pillar[6]arene for Decreasing Cytotoxicity of Oxaliplatin to Normal Cells and Improving Its Anticancer Bioactivity Against Colorectal Cancer. ACS Applied Materials & Interfaces, 2018, 10, 5365-5372.	4.0	78
30	Association between ambient air pollution and pregnancy complications: A systematic review and meta-analysis of cohort studies. Environmental Research, 2020, 185, 109471.	3.7	78
31	Novel brominated flame retardants in food composites and human milk from the Chinese Total Diet Study in 2011: Concentrations and a dietary exposure assessment. Environment International, 2016, 96, 82-90.	4.8	77
32	Hepatotoxicity of decabromodiphenyl ethane (DBDPE) and decabromodiphenyl ether (BDE-209) in 28-day exposed Sprague-Dawley rats. Science of the Total Environment, 2020, 705, 135783.	3.9	75
33	Supramolecular polymeric chemotherapy based on cucurbit[7]uril-PEG copolymer. Biomaterials, 2018, 178, 697-705.	5.7	74
34	Cytotoxicity induced by fine particulate matter (PM2.5) via mitochondria-mediated apoptosis pathway in human cardiomyocytes. Ecotoxicology and Environmental Safety, 2018, 161, 198-207.	2.9	74
35	A comparison of the thyroid disruption induced by decabrominated diphenyl ethers (BDE-209) and decabromodiphenyl ethane (DBDPE) in rats. Ecotoxicology and Environmental Safety, 2019, 174, 224-235.	2.9	73
36	The critical role of endothelial function in fine particulate matter-induced atherosclerosis. Particle and Fibre Toxicology, 2020, 17, 61.	2.8	72

ZHIWEI SUN

#	Article	IF	CITATIONS
37	Short-term PM2.5 exposure induces sustained pulmonary fibrosis development during post-exposure period in rats. Journal of Hazardous Materials, 2020, 385, 121566.	6.5	70
38	PM2.5-induced alteration of DNA methylation and RNA-transcription are associated with inflammatory response and lung injury. Science of the Total Environment, 2019, 650, 908-921.	3.9	69
39	Silica nanoparticles induce liver fibrosis via TCF-β ₁ /Smad3 pathway in ICR mice. International Journal of Nanomedicine, 2017, Volume 12, 6045-6057.	3.3	67
40	Silica nanoparticles promote oxLDL-induced macrophage lipid accumulation and apoptosis via endoplasmic reticulum stress signaling. Science of the Total Environment, 2018, 631-632, 570-579.	3.9	67
41	PM2.5-induced ADRB2 hypermethylation contributed to cardiac dysfunction through cardiomyocytes apoptosis via PI3K/Akt pathway. Environment International, 2019, 127, 601-614.	4.8	67
42	Cardiovascular toxicity assessment of polyethylene nanoplastics on developing zebrafish embryos. Chemosphere, 2021, 282, 131124.	4.2	65
43	Dietary exposure assessment of Chinese population to tetrabromobisphenol-A, hexabromocyclododecane and decabrominated diphenyl ether: Results of the 5th Chinese Total Diet Study. Environmental Pollution, 2017, 229, 539-547.	3.7	64
44	Silica nanoparticles induce autophagosome accumulation via activation of the EIF2AK3 and ATF6 UPR pathways in hepatocytes. Autophagy, 2018, 14, 1185-1200.	4.3	64
45	Silica nanoparticles induced endothelial apoptosis via endoplasmic reticulum stress-mitochondrial apoptotic signaling pathway. Chemosphere, 2018, 210, 183-192.	4.2	63
46	PM2.5 triggered apoptosis in lung epithelial cells through the mitochondrial apoptotic way mediated by a ROS-DRP1-mitochondrial fission axis. Journal of Hazardous Materials, 2020, 397, 122608.	6.5	60
47	Selenium–Platinum Coordination Compounds as Novel Anticancer Drugs: Selectively Killing Cancer Cells via a Reactive Oxygen Species (ROS)â€Mediated Apoptosis Route. Chemistry - an Asian Journal, 2014, 9, 2295-2302.	1.7	59
48	PM2.5 aggravates the lipid accumulation, mitochondrial damage and apoptosis in macrophage foam cells. Environmental Pollution, 2019, 249, 482-490.	3.7	58
49	In Situ Exosomal MicroRNA Determination by Target-Triggered SERS and Fe ₃ O ₄ @TiO ₂ -Based Exosome Accumulation. ACS Sensors, 2021, 6, 852-862.	4.0	56
50	BDE-209 and DBDPE induce male reproductive toxicity through telomere-related cell senescence and apoptosis in SD rat. Environment International, 2021, 146, 106307.	4.8	55
51	Combined toxicity of amorphous silica nanoparticles and methylmercury to human lung epithelial cells. Ecotoxicology and Environmental Safety, 2015, 112, 144-152.	2.9	54
52	Fine particle matter disrupts the blood–testis barrier by activating TGFâ€₽̂3/p38 MAPK pathway and decreasing testosterone secretion in rat. Environmental Toxicology, 2018, 33, 711-719.	2.1	54
53	<p>The Size-dependent Cytotoxicity of Amorphous Silica Nanoparticles: A Systematic Review of in vitro Studies</p> . International Journal of Nanomedicine, 2020, Volume 15, 9089-9113.	3.3	52
54	Multi-organ toxicity induced by fine particulate matter PM 2.5 in zebrafish (Danio rerio) model. Chemosphere, 2017, 180, 24-32.	4.2	51

#	Article	IF	CITATIONS
55	A national survey of tetrabromobisphenol-A, hexabromocyclododecane and decabrominated diphenyl ether in human milk from China: Occurrence and exposure assessment. Science of the Total Environment, 2017, 599-600, 237-245.	3.9	50
56	Repeat dose exposure of PM2.5 triggers the disseminated intravascular coagulation (DIC) in SD rats. Science of the Total Environment, 2019, 663, 245-253.	3.9	48
57	PM2.5-induced inflammation and lipidome alteration associated with the development of atherosclerosis based on a targeted lipidomic analysis. Environment International, 2020, 136, 105444.	4.8	47
58	Silica nanoparticles induced intrinsic apoptosis in neuroblastoma SH-SY5Y cells via CytC/Apaf-1 pathway. Environmental Toxicology and Pharmacology, 2017, 52, 161-169.	2.0	46
59	Fine particulate matters induce apoptosis via the ATM/P53/CDK2 and mitochondria apoptosis pathway triggered by oxidative stress in rat and GC-2spd cell. Ecotoxicology and Environmental Safety, 2019, 180, 280-287.	2.9	45
60	Melatonin ameliorates PM _{2.5} â€induced cardiac perivascular fibrosis through regulating mitochondrial redox homeostasis. Journal of Pineal Research, 2021, 70, e12686.	3.4	44
61	Oxidative Damage and Energy Metabolism Disorder Contribute to the Hemolytic Effect of Amorphous Silica Nanoparticles. Nanoscale Research Letters, 2016, 11, 57.	3.1	43
62	Dualâ€5elective and Dualâ€Enhanced SERS Nanoprobes Strategy for Circulating Hepatocellular Carcinoma Cells Detection. Chemistry - A European Journal, 2018, 24, 7060-7067.	1.7	43
63	Visibleâ€Lightâ€Induced Disruption of Diselenideâ€Containing Layerâ€byâ€Layer Films: Toward Combination of Chemotherapy and Photodynamic Therapy. Small, 2013, 9, 3981-3986.	5.2	42
64	Silica nanoparticles trigger hepatic lipid-metabolism disorder in vivo and in vitro. International Journal of Nanomedicine, 2018, Volume 13, 7303-7318.	3.3	42
65	Disruption of thyroid hormone levels by decabrominated diphenyl ethers (BDE-209) in occupational workers from a deca-BDE manufacturing plant. Environment International, 2018, 120, 505-515.	4.8	42
66	Silica nanoparticles trigger the vascular endothelial dysfunction and prethrombotic state via miR-451 directly regulating the IL6R signaling pathway. Particle and Fibre Toxicology, 2019, 16, 16.	2.8	42
67	Macrophages participate in local and systemic inflammation induced by amorphous silica nanoparticles through intratracheal instillation. International Journal of Nanomedicine, 2016, Volume 11, 6217-6228.	3.3	41
68	Fine particulate matter induces vascular endothelial activation via IL-6 dependent JAK1/STAT3 signaling pathway. Toxicology Research, 2016, 5, 946-953.	0.9	41
69	Amorphous silica nanoparticles induce malignant transformation and tumorigenesis of human lung epithelial cells <i>via</i> P53 signaling. Nanotoxicology, 2017, 11, 1176-1194.	1.6	41
70	Metabolic impact induced by total, water soluble and insoluble components of PM2.5 acute exposure in mice. Chemosphere, 2018, 207, 337-346.	4.2	41
71	Oxidative stress- and mitochondrial dysfunction-mediated cytotoxicity by silica nanoparticle in lung epithelial cells from metabolomic perspective. Chemosphere, 2021, 275, 129969.	4.2	41
72	Inflammation–coagulation response and thrombotic effects induced by silica nanoparticles in zebrafish embryos. Nanotoxicology, 2018, 12, 470-484.	1.6	39

ZHIWEI SUN

#	Article	IF	CITATIONS
73	The correlation between PM2.5 exposure and hypertensive disorders in pregnancy: A Meta-analysis. Science of the Total Environment, 2020, 703, 134985.	3.9	39

Comprehensive understanding of PM2.5 on gene and microRNA expression patterns in zebrafish (Danio) Tj ETQq0 9.9 rgBT / gyerlock 10

75	Effect of the aggregation state of amorphous calcium phosphate on hydroxyapatite nucleation kinetics. RSC Advances, 2017, 7, 25497-25503.	1.7	38
76	Silica nanoparticle exposure inducing granulosa cell apoptosis and follicular atresia in female Balb/c mice. Environmental Science and Pollution Research, 2018, 25, 3423-3434.	2.7	38
77	DNA methylation: A critical epigenetic mechanism underlying the detrimental effects of airborne particulate matter. Ecotoxicology and Environmental Safety, 2018, 161, 173-183.	2.9	37
78	Urine metabolites associated with cardiovascular effects from exposure of size-fractioned particulate matter in a subway environment: A randomized crossover study. Environment International, 2019, 130, 104920.	4.8	37
79	Ambient particulate matter compositions and increased oxidative stress: Exposure-response analysis among high-level exposed population. Environment International, 2021, 147, 106341.	4.8	37
80	Progress in the research of nanomaterial-based exosome bioanalysis and exosome-based nanomaterials tumor therapy. Biomaterials, 2021, 274, 120873.	5.7	37
81	DNA Hypermethylation of CREB3L1 and Bcl-2 Associated with the Mitochondrial-Mediated Apoptosis via PI3K/Akt Pathway in Human BEAS-2B Cells Exposure to Silica Nanoparticles. PLoS ONE, 2016, 11, e0158475.	1.1	37
82	Silica nanoparticles induce pyroptosis and cardiac hypertrophy via ROS/NLRP3/Caspase-1 pathway. Free Radical Biology and Medicine, 2022, 182, 171-181.	1.3	37
83	Inflammatory response and blood hypercoagulable state induced by low level co-exposure with silica nanoparticles and benzo[a]pyrene in zebrafish (Danio rerio) embryos. Chemosphere, 2016, 151, 152-162.	4.2	36
84	Fine particle matters induce DNA damage and G2/M cell cycle arrest in human bronchial epithelial BEAS-2B cells. Environmental Science and Pollution Research, 2017, 24, 25071-25081.	2.7	36
85	Amorphous silica nanoparticles accelerated atherosclerotic lesion progression in ApoEâ^'/â^' mice through endoplasmic reticulum stress-mediated CD36 up-regulation in macrophage. Particle and Fibre Toxicology, 2020, 17, 50.	2.8	36
86	Endosulfan induces autophagy and endothelial dysfunction via theÂAMPK/mTOR signaling pathway triggered by oxidative stress. Environmental Pollution, 2017, 220, 843-852.	3.7	35
87	Thyroid function and decabromodiphenyl ethane (DBDPE) exposure in Chinese adults from a DBDPE manufacturing area. Environment International, 2019, 133, 105179.	4.8	35
88	Combined exposure of fine particulate matter and high-fat diet aggravate the cardiac fibrosis in C57BL/6J mice. Journal of Hazardous Materials, 2020, 391, 122203.	6.5	35
89	BDE-209 induces male reproductive toxicity via cell cycle arrest and apoptosis mediated by DNA damage response signaling pathways. Environmental Pollution, 2019, 255, 113097.	3.7	34
90	Time-dependent toxicity of cadmium telluride quantum dots on liver and kidneys in mice: histopathological changes with elevated free cadmium ions and hydroxyl radicals. International Journal of Nanomedicine, 2016, 11, 2319.	3.3	33

#	Article	IF	CITATIONS
91	Silica nanoparticles induce JNK-mediated inflammation and myocardial contractile dysfunction. Journal of Hazardous Materials, 2020, 391, 122206.	6.5	33
92	The mitochondria-targeted antioxidant MitoQ attenuated PM2.5-induced vascular fibrosis via regulating mitophagy. Redox Biology, 2021, 46, 102113.	3.9	33
93	Silica nanoparticles induce start inhibition of meiosis and cell cycle arrest via down-regulating meiotic relevant factors. Toxicology Research, 2016, 5, 1453-1464.	0.9	32
94	Silica nanoparticles exacerbates reproductive toxicity development in high-fat diet-treated Wistar rats. Journal of Hazardous Materials, 2020, 384, 121361.	6.5	32
95	Combined toxicity of silica nanoparticles and methylmercury on cardiovascular system in zebrafish (Danio rerio) embryos. Environmental Toxicology and Pharmacology, 2016, 44, 120-127.	2.0	31
96	Transcriptomic analyses of human bronchial epithelial cells BEAS-2B exposed to atmospheric fine particulate matter PM2.5. Toxicology in Vitro, 2017, 42, 171-181.	1.1	31
97	Combined Effect of Silica Nanoparticles and Benzo[a]pyrene on Cell Cycle Arrest Induction and Apoptosis in Human Umbilical Vein Endothelial Cells. International Journal of Environmental Research and Public Health, 2017, 14, 289.	1.2	31
98	Co-exposure subacute toxicity of silica nanoparticles and lead acetate on cardiovascular system. International Journal of Nanomedicine, 2018, Volume 13, 7819-7834.	3.3	31
99	Disturbed mitochondrial quality control involved in hepatocytotoxicity induced by silica nanoparticles. Nanoscale, 2020, 12, 13034-13045.	2.8	31
100	Innovative strategies to boost photothermal therapy at mild temperature mediated by functional nanomaterials. Materials and Design, 2022, 214, 110391.	3.3	31
101	Determination of novel brominated flame retardants and polybrominated diphenyl ethers in serum using gas chromatography–mass spectrometry with two simplified sample preparation procedures. Analytical and Bioanalytical Chemistry, 2016, 408, 7835-7844.	1.9	30
102	Cytotoxicity and autophagy dysfunction induced by different sizes of silica particles in human bronchial epithelial BEAS-2B cells. Toxicology Research, 2016, 5, 1216-1228.	0.9	30
103	Cellular pathways involved in silica nanoparticles induced apoptosis: A systematic review of in vitro studies. Environmental Toxicology and Pharmacology, 2017, 56, 191-197.	2.0	29
104	Low-dose combined exposure of nanoparticles and heavy metal compared with PM2.5 in human myocardial AC16 cells. Environmental Science and Pollution Research, 2017, 24, 27767-27777.	2.7	29
105	Silica nanoparticles inhibit macrophage activity and angiogenesis via VEGFR2-mediated MAPK signaling pathway in zebrafish embryos. Chemosphere, 2017, 183, 483-490.	4.2	27
106	Effect of particulate matter exposure on the prevalence of allergic rhinitis in children: A systematic review and meta-analysis. Chemosphere, 2021, 268, 128841.	4.2	27
107	Developmental toxicity of CdTe QDs in zebrafish embryos and larvae. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	26
108	Silica nanoparticles induce spermatocyte cell autophagy through microRNA-494 targeting AKT in GC-2spd cells. Environmental Pollution, 2019, 255, 113172.	3.7	26

#	Article	IF	CITATIONS
109	<p>Repeated intravenous administration of silica nanoparticles induces pulmonary inflammation and collagen accumulation via JAK2/STAT3 and TGF.β/Smad3 pathways in vivo</p> . International Journal of Nanomedicine, 2019, Volume 14, 7237-7247.	3.3	26
110	Endoplasmic reticulum stress-dependent oxidative stress mediated vascular injury induced by silica nanoparticles in vivo and in vitro. NanoImpact, 2019, 14, 100169.	2.4	26
111	The impact of prenatal exposure to PM2.5 on childhood asthma and wheezing: a meta-analysis of observational studies. Environmental Science and Pollution Research, 2020, 27, 29280-29290.	2.7	26
112	Increased risk of gestational diabetes mellitus in women with higher prepregnancy ambient PM2.5 exposure. Science of the Total Environment, 2020, 730, 138982.	3.9	26
113	Silica nanoparticles induce reversible damage of spermatogenic cells via RIPK1 signal pathways in C57 mice. International Journal of Nanomedicine, 2016, 11, 2251.	3.3	25
114	Genome-wide transcriptional analysis of cardiovascular-related genes and pathways induced by PM2.5 in human myocardial cells. Environmental Science and Pollution Research, 2017, 24, 11683-11693.	2.7	25
115	Metabolomic characteristics of hepatotoxicity in rats induced by silica nanoparticles. Ecotoxicology and Environmental Safety, 2021, 208, 111496.	2.9	25
116	Co-exposure to amorphous silica nanoparticles and benzo[a]pyrene at low level in human bronchial epithelial BEAS-2B cells. Environmental Science and Pollution Research, 2016, 23, 23134-23144.	2.7	24
117	Genome-wide transcriptional analysis of silica nanoparticle-induced toxicity in zebrafish embryos. Toxicology Research, 2016, 5, 609-620.	0.9	24
118	Decabromodiphenyl ether disturbs hepatic glycolipid metabolism by regulating the PI3K/AKT/GLUT4 and mTOR/PPARγ/RXRα pathway in mice and LO2 cells. Science of the Total Environment, 2021, 763, 142936.	3.9	24
119	Adverse outcome pathway of fine particulate matter leading to increased cardiovascular morbidity and mortality: An integrated perspective from toxicology and epidemiology. Journal of Hazardous Materials, 2022, 430, 128368.	6.5	24
120	Association between ambient particulate matter exposure and semen quality in fertile men. Environmental Health, 2022, 21, 16.	1.7	23
121	Silica nanoparticles induce abnormal mitosis and apoptosis via PKC-δÂmediated negative signaling pathway in GC-2†cells of mice. Chemosphere, 2018, 208, 942-950.	4.2	22
122	The effects of decabromodiphenyl ether on glycolipid metabolism and related signaling pathways in mice. Chemosphere, 2019, 222, 849-855.	4.2	22
123	miR-205/IRAK2 signaling pathway is associated with urban airborne PM _{2.5} -induced myocardial toxicity. Nanotoxicology, 2020, 14, 1198-1212.	1.6	22
124	Mitochondrial dysfunction drives persistent vascular fibrosis in rats after short-term exposure of PM2.5. Science of the Total Environment, 2020, 733, 139135.	3.9	22
125	Multinucleation and cell dysfunction induced by amorphous silica nanoparticles in an L-02 human hepatic cell line. International Journal of Nanomedicine, 2013, 8, 3533.	3.3	21
126	Simple and fast analysis of tetrabromobisphenol A, hexabromocyclododecane isomers, and polybrominated diphenyl ethers in serum using solidâ€phase extraction or QuEChERS extraction followed by tandem mass spectrometry coupled to HPLC and GC. Journal of Separation Science, 2017, 40, 709-716.	1.3	21

ZHIWEI SUN

#	Article	IF	CITATIONS
127	Co-exposure of silica nanoparticles and methylmercury induced cardiac toxicity in vitro and in vivo. Science of the Total Environment, 2018, 631-632, 811-821.	3.9	21
128	Does psychosocial stress modify the association of fine particulate matter and ozone with cardiovascular health indicators?. Environmental Pollution, 2021, 277, 116726.	3.7	21
129	Global association between atmospheric particulate matter and obesity: A systematic review and meta-analysis. Environmental Research, 2022, 209, 112785.	3.7	21
130	Silica nanoparticles induce spermatogenesis disorders via L3MBTL2-DNA damage-p53 apoptosis and RNF8-ubH2A/ubH2B pathway in mice. Environmental Pollution, 2020, 265, 114974.	3.7	20
131	Integrative proteomics and metabolomics approach to elucidate metabolic dysfunction induced by silica nanoparticles in hepatocytes. Journal of Hazardous Materials, 2022, 434, 128820.	6.5	20
132	Autophagy and autophagy dysfunction contribute to apoptosis in HepG2 cells exposed to nanosilica. Toxicology Research, 2016, 5, 871-882.	0.9	19
133	Gene expression profiles and bioinformatics analysis of human umbilical vein endothelial cells exposed to PM 2.5. Chemosphere, 2017, 183, 589-598.	4.2	19
134	Determination of polybrominated diphenyl ethers and novel brominated flame retardants in human serum by gas chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2018, 1099, 64-72.	1.2	19
135	Silica nanoparticles induce cardiac injury and dysfunction via ROS/Ca2+/CaMKII signaling. Science of the Total Environment, 2022, 837, 155733.	3.9	19
136	Silica nanoparticles induce spermatocyte cell apoptosis through microRNA-2861 targeting death receptor pathway. Chemosphere, 2019, 228, 709-720.	4.2	18
137	Microarray-assisted size-effect study of amorphous silica nanoparticles on human bronchial epithelial cells. Nanoscale, 2019, 11, 22907-22923.	2.8	18
138	Independent effect of main components in particulate matter on DNA methylation and DNA methyltransferase: A molecular epidemiology study. Environment International, 2020, 134, 105296.	4.8	18
139	The relationship between exposure to PM2.5 and heart rate variability in older adults: A systematic review and meta-analysis. Chemosphere, 2020, 261, 127635.	4.2	18
140	Lysosomal impairment-mediated autophagy dysfunction responsible for the vascular endothelial apoptosis caused by silica nanoparticle via ROS/PARP1/AIF signaling pathway. Environmental Pollution, 2022, 304, 119202.	3.7	18
141	Endosulfan activates the extrinsic coagulation pathway by inducing endothelial cell injury in rats. Environmental Science and Pollution Research, 2015, 22, 15722-15730.	2.7	17
142	Comprehensive gene and microRNA expression profiling on cardiovascular system in zebrafish co-exposured of SiNPs and MeHg. Science of the Total Environment, 2017, 607-608, 795-805.	3.9	17
143	Endosulfan inducing apoptosis and necroptosis through activation RIPK signaling pathway in human umbilical vascular endothelial cells. Environmental Science and Pollution Research, 2017, 24, 215-225.	2.7	17
144	Integrative analysis of methylome and transcriptome variation of identified cardiac disease-specific genes in human cardiomyocytes after PM2.5 exposure. Chemosphere, 2018, 212, 915-926.	4.2	17

#	Article	IF	CITATIONS
145	Silica nanoparticles induce mitochondrial pathwayâ€dependent apoptosis by activating unfolded protein response in human neuroblastoma cells. Environmental Toxicology, 2021, 36, 675-685.	2.1	17
146	Dynamic recovery after acute single fine particulate matter exposure in male mice: Effect on lipid deregulation and cardiovascular alterations. Journal of Hazardous Materials, 2021, 414, 125504.	6.5	17
147	Silica nanoparticles induced the pre-thrombotic state in rats via activation of coagulation factor XII and the JNK-NF-ήJ/AP-1 pathway. Toxicology Research, 2015, 4, 1453-1464.	0.9	16
148	Zinc-induced metallothionein overexpression prevents doxorubicin toxicity in cardiomyocytes by regulating the peroxiredoxins. Xenobiotica, 2016, 46, 715-725.	0.5	16
149	NLRP3 inflammasome-mediated endothelial cells pyroptosis is involved in decabromodiphenyl ethane-induced vascular endothelial injury. Chemosphere, 2021, 267, 128867.	4.2	16
150	DNA methylation changes induced by BDE-209 are related to DNA damage response and germ cell development in GC-2spd. Journal of Environmental Sciences, 2021, 109, 161-170.	3.2	16
151	Melatonin alleviates PM2.5-triggered macrophage M1 polarization and atherosclerosis via regulating NOX2-mediated oxidative stress homeostasis. Free Radical Biology and Medicine, 2022, 181, 166-179.	1.3	16
152	Plasma kinetics and biodistribution of water-soluble CdTe quantum dots in mice: a comparison between Cd and Te. Journal of Nanoparticle Research, 2011, 13, 5373-5380.	0.8	15
153	Aberrant Cytokinesis and Cell Fusion Result in Multinucleation in HepG2 Cells Exposed to Silica Nanoparticles. Chemical Research in Toxicology, 2015, 28, 490-500.	1.7	15
154	Endosulfan inhibits proliferation through the Notch signaling pathway in human umbilical vein endothelial cells. Environmental Pollution, 2017, 221, 26-36.	3.7	15
155	Short-term PM2.5 exposure and circulating von Willebrand factor level: a meta-analysis. Science of the Total Environment, 2020, 737, 140180.	3.9	15
156	Decabromodiphenyl ether induces male reproductive toxicity by activating mitochondrial apoptotic pathway through glycolipid metabolism dysbiosis. Chemosphere, 2021, 285, 131512.	4.2	15
157	The critical role of epigenetic mechanism in PM2.5-induced cardiovascular diseases. Genes and Environment, 2021, 43, 47.	0.9	15
158	Long-term respiratory exposure to amorphous silica nanoparticles promoted systemic inflammation and progression of fibrosis in a susceptible mouse model. Chemosphere, 2022, 300, 134633.	4.2	15
159	MiR-939-5p suppresses PM _{2.5} -induced endothelial injury <i>via</i> targeting HIF-1î± in HAECs. Nanotoxicology, 2021, 15, 706-720.	1.6	14
160	Impact of PM2.5 exposure on plasma metabolome in healthy adults during air pollution waves: A randomized, crossover trial. Journal of Hazardous Materials, 2022, 436, 129180.	6.5	14
161	Evaluation of fine particulate matter on vascular endothelial function in vivo and in vitro. Ecotoxicology and Environmental Safety, 2021, 222, 112485.	2.9	13
162	Endosulfan induces cell dysfunction through cycle arrest resulting from DNA damage and DNA damage and DNA damage cesponse signaling pathways. Science of the Total Environment, 2017, 589, 97-106.	3.9	12

#	Article	IF	CITATIONS
163	Metallothionein prevents doxorubicin cardiac toxicity by indirectly regulating the uncoupling proteins 2. Food and Chemical Toxicology, 2017, 110, 204-213.	1.8	12
164	Gene profiles to characterize the combined toxicity induced by low level co-exposure of silica nanoparticles and benzo[a]pyrene using whole genome microarrays in zebrafish embryos. Ecotoxicology and Environmental Safety, 2018, 163, 47-55.	2.9	12
165	Acute exposure to PM2.5 triggers lung inflammatory response and apoptosis in rat. Ecotoxicology and Environmental Safety, 2021, 222, 112526.	2.9	12
166	Cytoskeleton and Chromosome Damage Leading to Abnormal Mitosis Were Involved in Multinucleated Cells Induced by Silicon Nanoparticles. Particle and Particle Systems Characterization, 2015, 32, 636-645.	1.2	11
167	The Internalization, Distribution, and Ultrastructure Damage of Silica Nanoparticles in Human Hepatic L-02 Cells. Particle and Particle Systems Characterization, 2016, 33, 664-674.	1.2	11
168	The chronic effect of amorphous silica nanoparticles and benzo[a]pyrene co-exposure at low dose in human bronchial epithelial BEAS-2B cells. Toxicology Research, 2019, 8, 731-740.	0.9	11
169	RhB-encapsulating silica nanoparticles modified with PEG impact the vascular endothelial function in endothelial cells and zebrafish model. Science of the Total Environment, 2020, 711, 134493.	3.9	11
170	Endosulfan induces cardiotoxicity through apoptosis via unbalance of pro-survival and mitochondrial-mediated apoptotic pathways. Science of the Total Environment, 2020, 727, 138790.	3.9	11
171	The relationship between long-term exposure to PM2.5 and hypertension in women:A meta-analysis. Ecotoxicology and Environmental Safety, 2021, 208, 111492.	2.9	11
172	Silica nanoparticles induce pulmonary autophagy dysfunction and epithelial-to-mesenchymal transition via p62/NF-1ºB signaling pathway. Ecotoxicology and Environmental Safety, 2022, 232, 113303.	2.9	11
173	Particulate matter exposure and biomarkers associated with blood coagulation: A meta-analysis. Ecotoxicology and Environmental Safety, 2020, 206, 111417.	2.9	10
174	Subacute exposure of PM2.5 induces airway inflammation through inflammatory cell infiltration and cytokine expression in rats. Chemosphere, 2020, 251, 126423.	4.2	10
175	The relationship between exposure to PM2.5 and atrial fibrillation in older adults: A systematic review and meta-analysis. Science of the Total Environment, 2021, 784, 147106.	3.9	10
176	Silica nanoparticles inhibiting the differentiation of round spermatid and chromatin remodeling of haploid period via MIWI in mice. Environmental Pollution, 2021, 284, 117446.	3.7	10
177	Supramolecular Chemotherapy: Noncovalent Bond Synergy of Cucurbit[7]uril against Human Colorectal Tumor Cells. Langmuir, 2021, 37, 9547-9552.	1.6	9
178	Enhanced effects of TRAIL-endostatin-based double-gene-radiotherapy on suppressing growth, promoting apoptosis and inducing cell cycle arrest in vascular endothelial cells. Journal of Huazhong University of Science and Technology [Medical Sciences], 2012, 32, 167-172.	1.0	8
179	<p>Comprehensive Analysis of SiNPs on the Genome-Wide Transcriptional Changes in Caenorhabditis elegans</p> . International Journal of Nanomedicine, 2020, Volume 15, 5227-5237.	3.3	8
180	Silica nanoparticles inducing the apoptosis via microRNA-450b-3p targeting MTCH2 in mice and spermatocyte cell. Environmental Pollution, 2021, 277, 116771.	3.7	8

#	Article	IF	CITATIONS
181	Myocardial toxicity induced by silica nanoparticles in a transcriptome profile. Nanoscale, 2022, 14, 6094-6108.	2.8	8
182	Development of magnetic separation and quantum dots labeled immunoassay for the detection of mercury in biological samples. Journal of Trace Elements in Medicine and Biology, 2015, 30, 37-42.	1.5	7
183	Microarray-based bioinformatics analysis of the combined effects of SiNPs and PbAc on cardiovascular system in zebrafish. Chemosphere, 2017, 184, 1298-1309.	4.2	7
184	Maternal exposure to fine particle matters cause autophagy via UPR-mediated PI3K-mTOR pathway in testicular tissue of adult male mice in offspring. Ecotoxicology and Environmental Safety, 2020, 189, 109943.	2.9	6
185	Identification and validation of metformin protects against PM2.5-induced macrophages cytotoxicity by targeting toll like receptor pathway. Chemosphere, 2020, 251, 126526.	4.2	6
186	Exposure to polydopamine nanoparticles induces neurotoxicity in the developing zebrafish. NanoImpact, 2021, 24, 100353.	2.4	6
187	PM _{2.5} induce the defective efferocytosis and promote atherosclerosis via HIF-1α activation in macrophage. Nanotoxicology, 2022, 16, 290-309.	1.6	6
188	Silica nanoparticles induce multinucleation through activation of PI3K/Akt/GSK-3β pathway and downregulation of chromosomal passenger proteins in L-O2 cells. Journal of Nanoparticle Research, 2016, 18, 1.	0.8	5
189	Carbon Nanotubes Activate <i>Limulus</i> Amebocyte Lysate Coagulation by Interface Adsorption. ACS Applied Materials & amp; Interfaces, 2017, 9, 8450-8454.	4.0	5
190	Silica nanoparticles induce unfolded protein reaction mediated apoptosis in spermatocyte cells. Toxicology Research, 2020, 9, 454-460.	0.9	5
191	Supramolecular Chemotherapy Based on the Host–Guest Complex of Lobaplatin–Cucurbit[7]uril. ACS Applied Bio Materials, 2020, 3, 2449-2454.	2.3	5
192	PM2.5 exposure exaggerates the risk of adverse birth outcomes in pregnant women with pre-existing hyperlipidemia: Modulation role of adipokines and lipidome. Science of the Total Environment, 2021, 787, 147604.	3.9	5
193	Effects of ambient air pollution on glycosylated hemoglobin: a systematic review and meta-analysis. Environmental Science and Pollution Research, 2022, 29, 53954-53966.	2.7	5
194	Nanosilica induced dose-dependent cytotoxicity and cell type-dependent multinucleation in HepG2 and L-02 cells. Journal of Nanoparticle Research, 2016, 18, 1.	0.8	4
195	Melatonin Alleviates PM2.5-Induced Hepatic Steatosis and Metabolic-Associated Fatty Liver Disease in ApoE-/- Mice. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-24.	1.9	4
196	The alterations of miRNA and mRNA expression profile and their integration analysis induced by silica nanoparticles in spermatocyte cells. NanoImpact, 2021, 23, 100348.	2.4	3
197	Decabromodiphenyl ether-induced PRKACA hypermethylation contributed to glycolipid metabolism disorder via regulating PKA/AMPK pathway in rat and L-02 cells. Environmental Toxicology and Pharmacology, 2022, 90, 103808.	2.0	3
198	Silica nanoparticles induce hepatocyte ferroptosis and liver injury <i>via</i> ferritinophagy. Environmental Science: Nano, 2022, 9, 3014-3029.	2.2	3

#	Article	IF	CITATIONS
199	Ambient particulate air pollution, blood cell parameters, and effect modification by psychosocial stress: Findings from two studies in three major Chinese cities. Environmental Research, 2022, 210, 112932.	3.7	2
200	Accumulated oxidative stress risk in HUVECs by chronic exposure to non-observable acute effect levels of PM2.5. Toxicology in Vitro, 2022, , 105376.	1.1	2
201	Polycyclic aromatic hydrocarbons in particulate matter and serum club cell secretory protein change among schoolchildren: A molecular epidemiology study. Environmental Research, 2021, 192, 110300.	3.7	1
202	The critical role of epigenetic mechanisms involved in nanotoxicology. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, , e1789.	3.3	1
203	Microarray analysis of mRNA expression profiles in liver of ob/ob mice with real-time atmospheric PM2.5 exposure. Environmental Science and Pollution Research, 2022, 29, 76816-76832.	2.7	1